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Abstract Resumen
This paper explains the application of artificial neu-
ral networks (ANN) for the prediction of pollutant
emissions generated by mechanical failures in ignition
engines, from which the percentage of CO (% carbon
monoxide) and the particulate in parts per millions
of HC (ppm of unburned hydrocarbons) can be quan-
tified, through the study of the Otto cycle intake
phase, which is recorded through the physical imple-
mentation of a Manifold Absolute Pressure (MAP)
sensor. A rigorous protocol of sampling and further
statistical analysis is applied. The selection and reduc-
tion of attributes of the MAP sensor signal is made
based on the greater contribution of information and
significant difference with the application of three
statistical methods (ANOVA, correlation matrix and
Random Forest), from which a database that enables
training two backpropagation feedforward neural net-
works, with which a classification error of 5.4061e−09

and 9.7587e−05 for CO and HC, respectively, can be
obtained.

En el presente trabajo se explica la aplicación de RNA
(redes neuronales artificiales) para la predicción de
emisiones contaminantes generadas por fallas mecáni-
cas en motores de encendido provocado, de la cual se
puede cuantificar el porcentaje de CO (% monóxido
de carbono) y el particulado por millón HC (ppm
hidrocarburos sin quemar), a través del estudio de la
fase de admisión del ciclo Otto, la cual es registrada
por medio de la implementación física de un sensor
MAP (Manifold Absolute Pressure). Se aplica un ri-
guroso protocolo de muestreo y consecuente análisis
estadístico. La selección y reducción de atributos de
la señal del sensor MAP se realiza en función del
mayor aporte de información y diferencia significa-
tiva con la aplicación de tres métodos estadísticos
(ANOVA, matriz de correlación y Random Forest),
de la cual se obtiene una base de datos que permite el
entrenamiento de dos redes neuronales feed-forward
backpropagation, con las cuales se obtiene un error de
clasificación de 5.4061e−9 y de 9.7587e−5 para la red
neuronal de CO y HC respectivamente.

Keywords: prediction, pollutant emissions, carbon
monoxide (CO), non-combustion hydrocarbons (HC),
diagnostics, neural networks.
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1. Introduction

At present, the area of automotive transportation rep-
resents one of the main sources of air pollution; indeed,
the discharge of pollutants to the environment has
its origin in the accelerated population growth and
the development of different urban centers, thus the
deterioration of the quality of the air is due to mobile
(vehicles), stationary (industry) and areal (domestic
activities and services) sources.

The vehicular area (gasoline and diesel vehicles) is
one of the main emitters of burnt fossil fuels to the en-
vironment, due to the pollutant gases generated during
the operation of the automotive transportation, with
the primary emissions being: carbon monoxide (CO),
carbon dioxide (CO2), unburnt hydrocarbons (HC)
and nitrous oxides (NOx), such that they affect public
health and the equilibrium of the different ecosystems.

In the light of the previous paragraphs, it is nec-
essary to develop new specialized and methodological
techniques to obtain assertive diagnoses of mechanical
failures; simultaneously, artificial neural networks and
computational mathematics are used, due to the com-
plexity of analyzing and interpreting the operational
parameters of the ignition engine, and in this way de-
termining the mechanical failures and the emissions
that they produce, in short diagnosis times and opti-
mizing resources. The air pollution has harmful effects
on the health of all people, as demonstrated by the
research study carried out by Ballester [1], who shows
that in France, Switzerland and Austria 6 % of the
mortality and an important number of new cases of
respiratory diseases can be attributed to the air pollu-
tion, with half of this impact caused by the pollution
emitted by motor vehicles.

The research by Restrepo emphet al. [2] estimates
alarming contributions of polluting emissions that gen-
erate smog and contribute to the greenhouse effect in
the city of Pereira. The study indicates the contribu-
tion to pollution of each vehicular category according
to a software of the international model of emissions
and an extrapolation, and results indicate that particu-
lar vehicles contribute more than 80 % of CO emissions,
60 % of CO2, 65 % of NOx, 40 % of SOx, and mo-
torcycles contribute around 65 % of the particulate
material (PM).

The use of neural networks is considered a tech-
nique of great contribution in the analysis of internal
parameters of the ignition engines, as demonstrated
by Li et al. [3] through the application of a neural
network for predicting NOx emissions; the study uti-
lizes intensity relations of flame radicals, together with
flame temperature and NOx emissions, to train the
neural network.

Cortina [4] proposes a model for predicting the con-
centration of the pollutants in the city of Salamanca
(Mexico), with the most critical pollutants being SO2

and PM10; the model uses artificial neural networks
(ANN) in combination with clustering algorithms, and
the study uses particular meteorological variables as
factors that influence the concentration of pollutants.

It is relevant to reduce the emissions of CO, HC and
NOx of internal combustion engines with ignition start,
since they produce different environmental problems,
such as air pollution and global warming. Martinez et
al. [5] used artificial neural networks (ANN) to predict
the exhaust emissions of a 1.6 L ignition engine, with
the purpose of optimizing such engine, by reducing the
CO, HC and NOx emissions; the inputs of the ANN
were six operating parameters of the engine, and the
outputs were the three resulting exhaust emissions.

Similarly, Fontes et al. [6] apply multilayer percep-
tron (MLP) neural networks with a hidden layer as
a classifier of the impact of the air quality on human
health, using as only inputs traffic and meteorological
data. Parallel and combined strategies can be used
for determining the concentrations of emissions, for
example, a hybrid learning of the artificial neural net-
work (ANN) with the non-dominated sorting genetic
algorithm – II (NSGAII) to improve the precision and
predict the exhaust emissions of an ignition start gaso-
line four-stroke engine [7].

Different methods can be applied to analyze and
predict emissions, such as the multivariate linear re-
gression model to analyze the relationship between at-
mospheric pollutants and meteorological factors. Lopez
and Pacheco [8] show that the source of benzene is the
smoke from tobacco, gas stations, industrial emissions,
and exhaust pipes of motor vehicles in the urban zone
of the city of Cuenca (Ecuador), which has generated
a raise in the number of clinical cases, such as asthma
(36.34 %), bronchopneumonia (12.19 %), bronchiolitis
(16.89 %), bronchitis (6.29 %), pharyngitis (12.41 %),
pneumonia (11.73 %) and rhinitis (3.67 %), all this due
to the increase of the concentration of benzene in one
unit; on the other hand, the PM10 exhibits a positive
relationship with the venous thrombosis, causing an
increment of 3.56 % of the clinical cases per each unit
of increase in its concentration. Guadalupe [9] applies a
new methodology for modeling the pollutant emissions
from terrestrial moving sources in Quito (Ecuador),
the international model of vehicular emissions (IMVE),
which encompasses a bottom-up type of methodology
that gathers a large amount of information to make
up the inventory of emissions.

At present, the strategies for predicting the con-
centrations of gases are diverse. Leon and Piña [10]
present a model for predicting emissions (NOx, CO,
CO2, HC and O2) applied to gasoline powered vehicles,
with the use of artificial neural networks (ANN); the
input variables to the ANN are the mean effective
pressure (MEP), RPM, load and MAP, and the model
also predicts the load of the engine. Similarly, Contr-
eras et al. [11] have proposed a diagnosis system that
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can detect mechanical failures in Otto cycle engines
with ignition start, by means of artificial neural net-
works (ANN); the system is based on the use of the
signals from the MAP and CMP sensors, and has a
classification error of 1.89e−11.

The prediction system proposed in this work can
determine pollutant emissions and mechanical failures
caused by particular emissions, such as carbon monox-
ide (CO) and unburnt hydrocarbons (HC); the Engine
Control Unit (ECU) does not carry out the diagnosis
performed by the prediction system. The system is
based on the pressure of the intake manifold, which
is recorded through the physical implementation of
a MAP sensor, thus the system has the capability of
reducing to a minimum the diagnosis time; in addi-
tion, the system does not utilize variables related to
the quality of the air of the city neither meteorologi-
cal variables for training the ANN, thus constituting
a significant advance for predicting the emissions of
exhaust gases and determining mechanical failures; ac-
tivating this system in centers of automobile service
and vehicular technical revision (VTR) is reliable and
accessible.

2. Methods and materials

The main topics are developed in this section. These
include experimental configuration and minimally in-
vasive instrumentation, conditions for acquiring the
samples, methodology for data acquisition, obtaining
the matrix for the analysis and reduction of attributes,
selection of the attributes for training the ANN, and
neural network algorithm in MATLAB for diagnosing
and predicting emissions.

2.1. Experimental configuration and mini-
mally invasive instrumentation

The main consideration of the study is to avoid dis-
assembling the elements and systems of the engine
of a vehicle to diagnose the failures and predict the
polluting emissions; consequently, the depression of
the engine is measured through the installation of a
MAP sensor in a vacuum connection of the intake
manifold, placing it after the throttle valve such that
the connection does not affect the operation of the
ignition engine.

Table 1 summarizes the characteristics of the engine
under test, and Table 2 includes the applied instru-
mentation.

Table 1. Characteristics of the experimental unit

Characteristic Value
Model Hyundai

Number of cylinders 4
Valve train DOHC

Injection system MFI
Cylinder 2000 cc
Power 175 CV @ 6000 rpm
Torque 168 N.m @ 4000 rpm
Fuel Gasoline (RON 95)

Compression index 10.5: 1

Table 2. Applied instrumentation

Characteristic Value
Personal computer PC

Automotive scanner Multiscan (Hanatech)
OBDI, OBDII, EOBD y CAN.

Connection
Motor, Transmisión,

ABS, Airbag.
Ni DAQ-6009

Diagnosis 8 AI de 14 bits, a 48 KS/s
2 AO de 12 bits

Data acquisition
card
Inputs
Outputs

Intake pressure MAP
Pressure range 20-117 KPa

Voltage 3.2V @ 1600 m.s.n.m
Piezoelectric

Sensor type
Gas analyzer for QROTECH / QGA 6000vehycles

Measuring range CO 0.0 9.99 %
Resolution 0.01 %

Measuring range HC 0.0 9999 ppm
Resolution 1 ppm

The identification of each cylinder of the engine
is carried out using the record of the signal of the
camshaft position (CP) sensor.

Figure 1 shows the experimental unit under test,
constituted by a Hyundai Sonata 2.0 DOHC engine, a
gas analyzer, a personal computer (PC) and an auto-
motive scanner. Figure 2 shows the connection of the
MAP type sensor, the vacuum connection in the intake
manifold and the data acquisition tool Ni DAQ-6009.

Figure 1. Instrumentation in the engine.
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Figure 2. Connection of the MAP sensor.

2.2. Conditions for acquisition of samples

The installation of the intake pressure sensor is carried
out, placing it in the intake manifold of the ignition en-
gine, consequently acquiring samples of the emissions
of NOx, CO, CO2 and HC through the gas analyzer,
and recording samples of the signal of the MAP sensor
with a Ni DAQ-6009 card together with the software
LabVIEW.

The samples of pressure and polluting emissions
are acquired at idle condition, at approximately 850
RPM with an engine temperature range between 92
and 99 °C and engine load 35 %; an automotive scan-
ner is used to confirm these conditions. Based on a
pre-experimental study carried out in the research, it
was determined that the signal of the MAP sensor
has peaks of higher frequency, thus the sampling fre-
quency is 10 KHz during a time period of 5 seconds for
each of the signals; such frequency is larger than the
one established according to Nyquist criterion (1.416
KHz) [11].

2.3. Methodology for data acquisition

Figure 3 presents the physical elements necessary for
the corresponding diagnosis of the mechanical failures
and prediction of polluting emissions.

Figure 3. Elements necessary for data acquisition.

The procedure represented in the flow diagram of
Figure 4, is applied to obtain the signals of the MAP
and CP sensors.

The process of obtaining the data starts with the
revision of correct operation of the engine or supervised
failure, and subsequently the connection of the sensors
is inspected. If the connection is correct, the signal
is saved with the software LabVIEW and registered
in an Excel file, if not, the connection of the sensors

is verified [11]. The previously described procedure
is applied to record the signals, both for the cases of
engine in good operating condition (Figure 4(a)) and
of engine with supervised failure (Figure 4(b)) [11].
The data acquisition process is performed 20 times for
each of the engine conditions.

Table 3 indicates the total of six failures that are
generated in the ignition engine experimental unit,
each with the corresponding identification code; the
condition of the engine in optimal operation is also
indicated.

Figure 4. Flow diagram of the procedure for data acqui-
sition (a) engine ok, (b) engine with failure.

Table 3. Operating conditions of the ignition engine ex-
perimental unit

N.° Type of mechanical Identification
condition code

1 Engine in optimal 100operating condition
2 Failure in Injector 1 200
3 Failure in Injector 2 300
4 Failure in Injector 3 400
5 Failure in Injector 4 500
6 Failure in Coil 1-4 1000
7 Failure in Coil 2-3 1100

2.4. Obtaining the matrix of attributes analy-
sis and reduction

It is considered a complete segment of the signal of
the MAP sensor, which corresponds to a cycle of the
engine (720°±180°) taking into account the timing dis-
tribution of advance to intake opening (AIO) and delay
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of intake closure (DIC), for each of the cylinders [11].
A windowing of the signal of the MAP sensor is carried
out for each cylinder, as can be observed in Figure 5.

Once the time signals have been taken, an algo-
rithm is developed in the software Matlab for reading
and obtaining the general matrix with 18 attributes,
namely: geometric mean, maximum, minimum, me-
dian, covariance, variance, standard deviation, mode,
kurtosis factor, skewness coefficient, energy, power,
area under the curve, entropy, coefficient of variation,
range, mean square root and crest factor [11].

Figure 5. Windowing of the MAP sensor signal for each
cylinder.

For the selection and reduction of the number of
attributes, the general matrix is analyzed through 3
statistical methods: ANOVA, correlation matrix and
Random Forest.

The application of the single factor ANOVA statis-
tical method, allows to determine the best attributes
that enter to the general matrix, through the analysis
of the 18 attributes considering the greatest value of
R2, since values close to 100 % indicate that there
is a correct fit of the model to the data, in other
words, the variation between the attributes is deter-
mined. In addition, values of p close to 0 are considered,
which determine if the attributes are statistically sig-
nificant [11].

With respect to the correlation matrix, the at-
tributes with coefficients close to -1 or 1 were discarded,
since with them there is a strong relationship between
the variables, negative or positive, respectively. Indeed,
the attributes with coefficients close to zero were cho-
sen, because with those attributes there is no strong
correlation between the variables [11].

Regarding the Random Forest method, it allows
to obtain the estimation of the importance of the at-
tributes using the Curvature test, Standard CART
and Interaction test methods. Afterwards, a Pareto
analysis was applied to choose the attributes with
greatest priority, considering only the top 95 % of the
accumulated distribution [11].

2.5. Selection of attributes for training the
ANN

In order to select the attributes that will be considered
as inputs of the neural network, it was performed a
match analysis of the general matrix from which the
most often repeated attributes are chosen among the
results of each statistical method applied [11]. The
most often repeated attributes are shown in Table 4.

Table 4. Attributes utilized for training the artificial neu-
ral network

Statistical Number of
attributes repetitions
Área (v2) 5
Energy (J) 5
Entropy (J) 4

Maximum (V) 4
Mean (V) 5

Minimum (V) 5
Power (mW) 5
RMS (V) 5

2.6. Matlab algorithm of the neural network
for the diagnosis and prediction of emis-
sions

Figure 6 presents the flow diagram of the procedure for
creating the artificial neural networks corresponding
to CO and HC.

The algorithm initiates reading the matrix of inputs
and corresponding responses of the ANN. Then, the
input and response vectors are normalized using the
maximum value of each matrix, with the purpose of op-
timizing the creation of the ANN. Once the matrix of
attributes was normalized, the ANN was created [11].

The neural networks are established based on the
characteristics indicated in Table 5.
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Figure 6. Flow diagram of the procedure for creating the
ANN.

Table 5. Characteristics of the neural networks models

Characteristic Tipo
Model Backpropagation

Typology 4 layers Feedforward
On line/Off line Off

Learning Unsupervised
Learning rule Error correction
Association Hetero-asociation
Output Analogous

Figure 7 includes the parameters of the creation of
the feedforward backpropagation ANN for predicting
the emission of the CO pollutant.

Similarly, Figure 8 includes the parameters of the
creation of the feedforward backpropagation ANN for
predicting the emission of the HC pollutant.

Once created, the networks were trained consider-
ing parameters such as: type of algorithm, number of
epochs and maximum error.

The steps and formulas utilized to train the neural
network are presented in the following:

1. The weights of the neural network are initialized
with small random values.

2. An input pattern is entered to the network with
the different conditions of the engine Xp (Xp1,
Xp2, . . . Xpn) and the target output of the net-
work is specified as Ym, which would be the
value of emissions.

3. The actual output of the network is calculated.

The architecture of the network is shown in Figure
9, where subscript p indicates the p-th training vector,
j is the number of hidden unit and the index i varies
from 1 to the number of units of the input layer.

The classification error was verified for the CO and
HC networks previously trained; if the error is greater
than 5%, the parameters are changed to reduce such
error.

Figure 7. Structure of the CO neural network.

Figure 8. Structure of the HC neural network.
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Figure 9. Architecture of the feedforward network.

The CO neural network utilizes the trainscg (Scaled
Conjugate Gradient) training function for the system
that predicts emissions and diagnoses mechanical fail-
ures, which presented an error of 5.4061e−9.

Similarly, the HC neural network utilizes the train-
scg training function for predicting emissions and di-
agnosing mechanical failures, which presented an error
of 9.7587e−5.

Figures 10 and 11 present the results of the Pearson
correlation coefficient R of the CO and HC neural net-
works, respectively, which is provided by the training
code red.trainFcn=’trainscg’ of the Matlab software.

Figure 10. Correlation between the target values and the
values predicted by the CO neural network.

Figure 11. Correlation between the target values and the
values predicted by the HC neural network.

The lines indicate the target values and the black
circles represent the values predicted by the ANN. The
prediction of the neural network is efficient and verifies
a good performance, since it yields a global index of 1
in training, validation and testing, which indicates a
strong positive linear relationship between the real con-
ditions of the ignition engine and the results provided
by the neural network [11].

Figures 12 and 13 show a comparison between the
responses of the CO and HC neural network, respec-
tively, and the corresponding target values; observe
the seven actual mechanical conditions of the engine
identified by the neural networks.

Figure 12. CO neural network with percentage of error
5.4061e−9, with training function trainscg.
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Figure 13. HC neural network with percentage of error
9.7587e−5, with training function trainscg.

3. Results and discussion

Various tests were carried out under diverse operating
conditions, for the purpose of comparing the correct
performance of the system that predicts emissions and
diagnoses mechanical failures.

Two specific failure conditions are presented in this
section: injector 2 (300) and coil 1-4 (1000).

Figure 14 shows the results of the values obtained
by the CO neural network for the operating states
when injector 2 fails.

Figure 14. Result of the operating condition of injector
2.

Figure 15 shows the results of the values obtained
by the HC ANN for operating conditions when coil 1-4
fails.

After obtaining the results of the operating condi-
tions of the ignition engine, it may be remarked that
the differences between the actual responses and the
responses given by the CO and HC neural networks
have a value close to zero. Therefore, the application
of the system that diagnoses mechanical failures and
predicts the pollutant emissions is capable of detecting
the operational condition of mechanical failure and
predicting the pollutant emission.

Figure 15. Result of the operating condition of the high
voltage ignition coil 1-4.

Indeed, Figure 16 shows that after grouping the
data corresponding to the actual engine condition and
the responses obtained by the CO ANN, and in Figure
17 the corresponding to the HC ANN, using the Tukey
statistical method with a confidence interval (CI) of 95
%, it is determined that the means are equivalent and
there is no statistically significant difference, because
the means of each of the responses coincide in a value
close to zero.

In addition, Figures 18 and 19, which show the
intervals of the CO and HC ANNs, respectively, indi-
cate that there is no difference between the averages
of the tests in the different operational conditions of
the ignition engine.

Figure 16. Graph of the differences of the means for data
of actual response vs. the CO neural network.
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Figure 17. Graph of the differences of the means for data
of actual response vs. the HC neural network.

Figure 18. Graph of the data intervals of actual response
vs. CO neural network.

Figure 19. Graph of the data intervals of actual response
vs. HC neural network.

Similarly, Figures 20 and 21 corroborate that there
is a relationship between the actual response and the
response of the neural network, because they share the
same grouping letter (A) and the p-value is equal to
1. This results in a reliability value of approximately

100.00 %, which is acceptable for issues of diagno-
sis of mechanical failures and prediction of polluting
emissions of internal combustion ignition engines.

Figure 20. Results of the analysis of variance and com-
parisons of Tukey pairs of the CO ANN.

Figure 21. Results of the analysis of variance and com-
parisons of Tukey pairs of the HC ANN.

4. Conclusions

The developed neural network models for the diagno-
sis and prediction of polluting emissions of both CO
and HC, yield classification errors of 5.4061e−9 and
9.7587e−5, respectively.

The trainscg training function allows the precise
identification of different types of mechanical condi-
tions of the ignition engine and prediction of emissions,
thus constituting a viable alternative to be integrated
in a diagnosing system such as an automotive scanner
or gas analyzer of gasoline powered vehicles, due to the
computational speed offered by the artificial neural
networks.

By means of the single factor analysis of variance
a p-value equal to 1 was obtained, thus demonstrating
that the actual response of classification of mechani-
cal failures and prediction of emissions is equivalent
to the result obtained through the developed neural
networks, such that this value confirms that there is
no statistically significant difference.
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This work shows that the application of backprop-
agation feedforward neural networks is valid for the
detection of mechanical failure conditions, as well as
for the prediction of polluting emissions in gasoline
powered vehicles; besides, the applied diagnosis tech-
nique has the advantage of avoiding disassembling
elements and systems of the engine, by offering a tech-
nique which is minimally invasive, reliable and of great
precision.

Results show that backpropagation feedforward
neural networks with 160 or 250 hidden units and
trained with the trainscg (Scaled Conjugate Gradient)
function, may yield an average error of 4.87962e−5,
which demonstrates that the emissions of gasoline pow-
ered vehicles can be predicted with high precision.
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