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Abstract Resumen
This work proposes the application of a channel es-
timator based on Compressive Sensing (CS) on a
system that employs Orthogonal Frequency Division
Multiplexing (OFDM), utilizing Software Defined
Radio (SDR) devices. The application of the CS the-
ory is given through the use of sparse reconstruc-
tion algorithms such as Orthogonal Matching Pursuit
(OMP) and Compressive Sampling Matching Pursuit
(CoSaMP), in order to take advantage of the sparse
nature of the pilot subcarriers used in OFDM, op-
timizing the bandwidth of system. In addition, to
improve the performance of these algorithms, the con-
cept of sparse parity checking matrix is used, which is
implemented in the deployment of low density parity
check codes (LDPC) to obtain a sensing matrix that
improves the isometric restriction property (IRP) be-
longing to the CS paradigm. The document shows the
model implemented in the SDR equipment, analyzing
the bit error rate and the number of pilot symbols
used.

Este trabajo propone la aplicación de un estimador de
canal basado en sensado compresivo (CS, del inglés
Compressive Sensing) sobre un sistema que usa mul-
tiplexación por división de frecuencias ortogonales
(OFDM, del inglés Orthogonal Frequency Division
Multiplexing) usando dispositivos de radio definido
por software (SDR, del inglés Software Defined Ra-
dio). La aplicación de la teoría de CS se da a través
del uso de algoritmos de reconstrucción dispersa como
Orthogonal Matching Pursuit (OMP) y Compressive
Sampling Matching Pursuit (CoSaMP) con el fin de
aprovechar la naturaleza dispersa de las subporta-
doras piloto usadas en OFDM optimizando el an-
cho de banda del sistema. Además, para mejorar el
rendimiento de estos algoritmos, se utiliza el concepto
de la matriz de comprobación de paridad dispersa
que se implementa en el despliegue de códigos de
comprobación de paridad de baja densidad (LDPC,
del inglés Low Density Parity Check) para obtener
una matriz de sensado que mejore la propiedad de
restricción isométrica (RIP, del inglés Isometric Re-
striction Property) perteneciente al paradigma de CS.
El documento muestra el modelo implementado en
los equipos SDR analizando la tasa de error de bit y
la cantidad de símbolos piloto usados.

Keywords: Channel Estimation, LDPC, OFDM,
SDR, Compressive Sensing.
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1. Introduction

The orthogonal frequency division multiplexing
(OFDM) is currently the transmission technique mostly
implemented in wireless networks, due to its advan-
tages in high speed data transmission through fre-
quency selective channels. Thereby, the use of OFDM
has had a high performance because of its high effi-
ciency in the use of the radio spectrum and its robust-
ness to multipath delay [1, 2]. In addition, the inter
symbol interference (ISI) and inter carrier interference
(ICI) are reduced through the use of a cyclic prefix, en-
abling the replacement of complex time-domain equal-
izers by a simple frequency-domain equalizer [3]. In
this sense, for frequency selective and time-varying
radio channels in broadband mobile communication
systems, it is necessary to apply a reliable channel
estimation to implement coherent detection [1].

There are three types of channel estimators: blind
estimation, semi-blind estimation and pilot symbol
assisted modulation (PSAM). PSAM uses pilot sym-
bols that are known by both receiver and transmitter
at different positions, to obtain an approximation of
the channel in exchange for losing spectral efficiency.
On the other hand, blind estimation is focused on
statistical processes with high mathematical level ex-
hibiting improvements regarding spectral efficiency,
even though it is not commonly used nowadays due
to its high complexity, slow speed of convergence and
low performance [4]. At last, the semi-blind estimation
combines the two previous approaches to yield a com-
promise between complexity and efficiency; for this
matter, both training sequences and statistical models
of the channel are utilized [5].

On the basis of the above, this work proposes the
use of PSAM for channel estimation, where the gain
of the channel and the phase distortion are obtained
from the received signal at the positions of the pilot
symbols [1]. These pilot symbols are also utilized to
improve the synchronization of time and frequency in
the communication system. Nevertheless, it is neces-
sary to use a greater percentage of pilot symbols to
increase the performance, which implies that certain
subcarriers do not transmit information [2].

In addition, in this work the number of pilot sub-
carriers is reduced through the use of compressive
sensing (CS) in the estimation of the channel, in order
to improve the utilization of the bandwidth. This can
be applied since it is possible to estimate the channel
taking advantage of the CS theory, considering that
the number of pilot symbols is sparse with respect
to the total number of symbols that constitute an
OFDM message, thus obtaining a compressed version
of the channel corresponding to its effects on the pilot
subcarriers [6].

The process is also optimized for implementation
on software defined radio (SDR) equipment, through

the use of the low density parity check (LDPC) matrix
in combination with the CS paradigm.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the mathematical modeling of OFDM,
CS and the application of LDPC matrices with CS.
Section 3 describes the implementation in the SDR de-
vices using LDPC matrices with CS. Section 4 presents
the results obtained, and the analysis of the bandwidth
and the bit error rate (BER). At last, section 5 gives
the conclusions and recommendations for future works.

2. Mathematical modeling

The implementation is developed from the mathemati-
cal model of OFDM, where an OFDM symbol is repre-
sented by S(q) ∈ RQ, such that a set of Q information
symbols is transmitted by symbol j of OFDM; each
with a subcarrier q is denoted as Sj(q), thus that
[Sj(0), . . . , Sj(q), . . . , Sj(Q − 1)]T represents the vec-
tor of information symbols transmitted in the j-th
OFDM symbol [2, 7].

Each OFDM symbol uses the serial flow of infor-
mation symbols, converting them into Q parallel flows
and later inserting the pilot symbols necessary in the
estimation of the channel according to the proposed
transmission scheme. Besides, subcarriers in zero are
added to establish guard bands between each OFDM
symbol, thus avoiding the interference of adjacent chan-
nels. The number of subcarriers of an OFDM symbol
is given by

Q = I + P + Z (1)

where I corresponds to the number of subcarriers
with information, P is the number of pilot subcarriers
and Z is the number of subcarriers in zero, for an
OFDM symbol. According to this, equation (2) de-
scribes the format of an OFDM symbol corresponding
to the frequency domain, and then the inverse discrete
Fourier transform is applied to obtain the symbol in
the time domain, as described in equation (3). The
distribution of the zero-padding is detailed in [8].

Sz(q) ,
{
S(q), Q−(I+P )

2 ≤ q ≤ Q−(I+P )
2 − 1

0, any other case
(2)

Sz = FHSz (3)

The reduction of ISI and ICI is due to the use of
the so-called cyclic prefix (CP), which consists of a
cyclic extension of the OFDM symbol. The CP is as
long as the expected propagation delay, and the effects
of both are found in [9]. On the other hand, the signal
received for OFDM may be described in equation (4).

yj = Hjsj + zj (4)
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The vector of received information symbols is
yj = [yj(0), . . . , yj(Q− 1)]T in the j-th OFDM sym-
bol, zj is the Gaussian noise and Hj denotes the value
of the channel for the j-th OFDM symbol, which is
obtained by means of the channel estimation block [7].

The receiver uses the Van de Beek algorithm, which
takes advantage of the cyclic prefix to establish the
beginning and the end of an OFDM symbol. This al-
gorithm will also allow correcting the effects of the
channel in possible phase shifts, and avoid losing the
orthogonality in the subcarriers [10].

In the following the cyclic prefix is removed and the
discrete Fourier transform (DFT) is applied to recover
the information symbols. Prior to the recovery of the
information symbols, the channel is estimated after
removing the zero-padding and extracting the pilot
symbols. The equalized data are obtained through the
operation indicated in equation (5) [11], where Ĥe(q)
is the estimated channel. Table 1 presents a list of all
the variables used along this work.

Se = Y (q)
Ĥe(q)

q = 0, 1, . . . , Q− 1 (5)

2.1. Compressive sensing

From another perspective, the CS paradigm considers a
«sparse» signal x that possesses only K elements differ-
ent than zero, with K << N and where x ∈ RN . Then,
through a matrix Φ of dimensionM×N , with N > M ,
known as sensing matrix, it is sought to concentrate the
more relevant information in x through the use of an-
other vector y ∈ RM . If this is not fulfilled, the ability
of reconstructing x from y is reduced; this restriction
is known as null space property (NSP) [11,12].

It is not easy to find signals considered «sparse»,
however, it is possible to find an approximation to
this concept which appears when the signal x may be
«compressible» in some vector basis different to the
original [11–13]. Therefore, x = Ψα, where Ψ (also
called dictionary matrix of x) corresponds to the vec-
tor basis in which x is projected, and α corresponds to
the atoms of x inside of the domain of Ψ. Thereby, the
original signal may be represented through the linear
combination proposed in (6) [14]. For instance, the dic-
tionary may be of Fourier, DCT or Wavelet [11,15,16].

x = Ψα =
N∑

i=1
αiψi (6)

The compression of the signal x in the signal y may
be obtained through (7), where Θ = ΦΨ. Figures 1(a)
and 1(b) graphically show the concept of CS [13,17].

y = Φx = ΦΨα = Θα (7)
The literature suggests that Φ should be random

to fulfill the isometric restriction property (IRP), and
in this way x may be reconstructed from y [16, 18].

(a)

(b)

Figure 1. Principle of operation of compressive sensing:
(a) measuring process in CS with random sensing matrix
Φ and measuring matrix Ψ. (b) measuring process with
Θ = ΦΨ.

Table 1. List of variables

Variables Description
Q Total of subcarriers in the OFDM symbol.

Sj(q) Subcarrier q in the j-th OFDM symbol.
I Total of subcarriers with information.
P Total of pilot subcarriers.
Z Total of subcarriers in zero.

Sz(q) OFDM symbol with zero-padding
in subcarrier q.

F Fourier transform matrix.

sz
OFDM symbol with zero-padding

in time.

yj
Vector of received symbols in the
j-th OFDM symbol in time.

Hj
Channel vector in the j-th

OFDM symbol.

sj
j-th OFDM symbol transmitted

in time.
Zj Complex Gaussian noise.

Y (q) OFDM symbol in frequency, after removing the
cyclic prefix, zero-padding and without pilots.

Se Symbols equalized in frequency.
He(q) Estimated channel in frequency.
x Data vector of length N .
y Compressed vector of length M .
Φ Compressing or sensing matrix, Phi.
N Total length of the vector of data to be compressed.
K Total elements different than zero.
M Total length of the vector of compressed data.
Ψ Measuring or dictionary matrix, Psi.
α Vector of sparse coefficients, alpha.
Θ Sensing matrix in its complete form, Theta.
Wc Number of logic “1”s per column in HLDP C

Wr Number of logic “1”s per row HLDP C

HLDP C Parity matrix of LDPC.
A Matrix of D × E elements.
B Matrix of D ×D elements.
D Number of parity bits in the coding.
E Number of information bits in the coding.
G Total bits of information + parity (codeword).
Hi Left side irregular parity matrix of LDPC.
SC Right side staircase parity matrix of LDPC.
Tr Right side triangle parity matrix of LDPC.
Ĥp Channel of pilots.
Yp Received pilot symbols.
Sp Known pilot symbols.
Nf Frequency separation between pilots.

ΦLDP C Sensing matrix constructed with LDPC base.
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In general, the sensing matrices may be obtained
from a random process with normal distribution,
achieving a good performance during the reconstruc-
tion of the signal, even though these distributions may
demand many resources [15,16].

Since N > M and N >> K, the process of recon-
structing x becomes the optimization problem formu-
lated in equation (8), where it is sought to find the
atoms α that minimize the error ||y −Θα||0.

α = arg min||α||0 s.t.ΦΨα (8)

Then, x may be reconstructed from α using equa-
tion (6). Nevertheless, the optimization problem has
no solution since it is of type NP Hard [11–13]. In this
respect, the sparse reconstruction algorithms seek to
relax the optimization problem to obtain a pseudo-
optimal solution. In addition, their performance can
be improved if it is used an appropriate sensing matrix
which enables preserving the information and guar-
antees the reconstruction of the original signal in a
unique manner [15,16,19–22].

The Orthogonal Matching Pursuit (OMP) can be
highlighted, among the most popular sparse recon-
struction algorithms used in the application of CS for
channel estimation. OMP belongs to the types of al-
gorithms based in greedy search, thus it is based on
successive approximations of the α coefficients, identi-
fying the support of the signal in an iterative manner
until the convergence criterion is reached [19,23]. The
OMP algorithm is described in Table 2.

Another algorithm of sparse reconstruction em-
ployed in this case of application of CS, is the Compres-
sive Sampling Matching Pursuit (CoSaMP) described
in [24]. The algorithm approximates the objective sig-
nal in an iterative manner, and in each iteration, the
current approximation obtains a residual updating
the samples such that they reflect the current residue.
These samples are utilized to identify the large com-
ponents, to estimate the approximation using least
squares. This process is repeated until the recoverable
energy of the signal is found. The CoSaMP algorithm
is described in Table 3 [25].

These algorithms are suitable to be used in appli-
cations or reconstructions where they operate in real
time, due to their low computational cost.

Since the sensing matrix should fulfill the isomet-
ric restriction property (IRP), the use of parity check
matrices is considered in the design of channel coders
in the LDPC codes, since they fulfill the IRP criterion
and are deterministic; therefore they consume less re-
sources, thus being a good choice for the measuring
matrix in CS [20–22]. This will enable to avoid the
use of a pattern of pilots of the comb or block types,
as it is commonly utilized in OFDM with PSAM. On
this basis, it is sought to use a sparse pseudorandom
pattern of pilots employing an LDPC parity check

matrix [5].

Table 2. OMP algorithm

Algorithm 1: Algorithm OMP (Orthogonal Matching Pursuit)
Step 1 Input: Y = {y1, . . . , yM}; Compressed Input

ΘN,N ; Complete sensing matrix
k; Number of repetitions

Step 2 Output: αN

Step 3 Inicialization: resM = Y ;
indx = φ;

Step 4 for iter = 1 to k:
λ = arg max|ΘT × resM ;
indx = indx ∪ λM ;
αN = φ;
αN (indx) = pinv(Θ(:, indx))× Y ;
res = Y −Θ× αN ;
endfor

Step 5 Return: αN

Table 3. CoSaMP Algorithm

Algorithm 2: Algorithm CoSaMP (Compressive Sampling
Matching Pursuit)

Step 1 Input: x ∈ RN ; Compressed Input
Θ ∈ Rm×N ; con N > m; Complete sensing matrix
k; Number of repetitions

Step 2 Output: Sest

Step 3 Inicialization: u = Θx, Measuring vector;
Ω = {1, 2, . . . , N} Column index of Θ;

Step 4 for iter = 1 to k:
Ωk ⊂ Ω→ ΘΩk

;
Ωk+1 = J∗s where J∗s ⊂ Ω;
J = Supp{T1(|Θ× rk|; τk,1)} with |J | ≤ 2s;
where: T1 is a threshold function such that: τk,1 ≥ 0;
τk : residual;
with Ωk ∪ J : ||u−ΘIΩk∪Jb||2 minimized;
where: IΩk∪J) is an N ×N diagonal matrix;
i ∈ Ωk ∪ J ;
J∗s = Supp{T2(|b|; τk,2)};
where: T2 is a threshold function;
τk,2 ≥ 0 maximum of s elements of b that are retained;
Sest = b(J∗s );
rk+1 = u−ΘIΩk+1b;
endfor

Step 5 Return: Sest

2.2. LDPC Parity check matrix

The parity check matrix HLDP C defines the rela-
tionships between the different codification symbols
(source symbols and parity symbols). There are two
types, the regular matrices which have a fixed number
Wc of logic «1»s per column and a fixed number Wr
of logic «1»s per row. The second is the case of the ir-
regular matrices whose number of logic «1»s per row is
Wr and per column Wc, with Wr 6= Wc. The matrix
is constituted by elements with values «0» and «1»,
and is sparse since most of the elements are null [26].
This matrix is described in equation (9).

HLDP C = [A|B] (9)
Matrix A has dimension D×E and matrix B is of

dimension D×D, where E corresponds to the number
of information bits, D is the number of parity bits in
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the LDPC codification, and G = E + D would cor-
respond to the length of the codeword. The regular
LDPC matrices are divided in Gallager, characterized
by a structure of horizontal bands [27], and in Mackay-
Neal, characterized by a random construction [28].
These type of matrices do not guarantee the indepen-
dence between columns required by the IRP in CS,
thus they will not be used in this implementation [13].

The irregular matrices are divided in staircase and
triangle [29]. They are matrices that contain two sub-
matrices, and each of them uses a different method of
creation [29,30]. The left submatrix Hi of size D ×E
is constructed as follows:

• Use a vector which contains a random list of
possible positions with «1»s in the rows. This
vector is utilized to guarantee a homogeneous
distribution.

• Place in each column Wc nonzero elements,
choosing the positions of the vector of possi-
ble localizations. If the condition of a maximum
number Wr of nonzero elements per row is not
fulfilled now, choose another available random
position.

• Add nonzero elements in the rows with less than
two elements, to avoid decoding problems.

The right submatrix makes the difference in the
formation of an irregular LDPC matrix, since it can
be formed in staircase or in triangular shape, and in
any case is a matrix of dimension D ×D. In the case
of matrix Sc, it is an identity matrix in which nonzero
elements are later placed in the lower diagonal part.
Equation (10) shows a matrix HLDP C constructed
using this method.

(Hi|SC) =



0 1 0 1 1 1
... 1 0 0 0 0

1 1 1 0 0 1
... 1 1 0 0 0

1 0 1 1 1 0
... 0 1 1 0 0

1 1 0 0 1 0
... 0 0 1 1 0

0 0 1 1 0 1
... 0 0 0 1 1


(10)

The right triangle submatrix Tr is constituted by
an identity matrix of dimension D ×D as base, and a
sparse triangular lower matrix placed later. Equation
(11) shows a HLDP C matrix constructed by means of
this method.

(Hi|T r) =



0 1 0 1 1 1
... 1 0 0 0 0

1 1 1 0 0 1
... 1 1 0 0 0

1 0 1 1 1 0
... 1 1 1 0 0

1 1 0 0 1 0
... 1 0 1 1 0

0 0 1 1 0 1
... 0 1 1 1 1


(11)

3. Implementation of CS and LDPC for
channel estimation

This work is implemented in universal software radio
peripheral (USRP) equipment. The block diagram of
the implemented system is shown in Figure 2, where
each stage of the communication system is presented.

The equipment used are the USRP Ettus X310,
equivalent to the NI-USRP 2940R with the following
specifications:

• Bandwidth up to 40 MHz per channel (2 chan-
nels).

• The image loaded in the FPGA enables a 1 Gbps
Ethernet connection for 25 MS/s Full Duplex
transmission.

• The used UHD architecture is the available for
the «LABVIEW Communication Design Suite».

• Flexible clock architecture with configurable sam-
pling frequency.

The bandwidth of the system is a function of the
utilized IQ index, which determines the available band-
width [31].

It should be indicated that with the purpose of
working with a communication system closer to real-
ity, a LDPC channel encoder has been used consider-
ing what was worked in [32,33]. The selection of the
HLDP C matrices of this implementation was estab-
lished by validation through the analysis of the BER.
The selection of the matrix HLDP C applied simula-
tions with a varying sparsity of «1»s of the matrix
considering an AWGN channel with Rayleigh fading.
These matrices have a size of G=40 and E=20, due to
their efficiency and velocity according to Figure 3. For
this reason, the implementation of the cannel encoder
uses parity check matrices of staircase type.
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Figure 2. Model of the implemented OFDM system.

Figure 3. BER analysis for irregular LDPC matrices with
different percentages of sparsity of «1»s: (a) in an AWGN
channel, (b) in a channel with Rayleigh fading.

3.1. Channel estimation based on CS

In the linear estimation, the process improves when
the number of pilots increases at the expense of a re-
duction of the bandwidth available for transmitting
information. However, the use of CS to estimate the
channel makes possible to reduce the number of pilot
subcarriers, since there are only K subcarriers used as
pilots. Thereby, in equation (12), Ĥp is the compressed
version of the channel. Then, the compressed vector
y corresponds to Ĥp dividing the received pilots Yp

among the sent Sp. Therefore, the sensing matrix Φ is
of size P ×N , in which each element Nf is different
than 1 and corresponds to the position of each pilot
symbol, as observed in equation (13) [6]. In a comb
type distribution Nf is constant.

Ĥp = Yp

Sp
(12)

Φ =



Nf︷︸︸︷
1 0 0 0 0 0 · · · 0 0
0 0 0 1 0 0 · · · 0 0
...

...
...

...
...

... . . . ...
...

0 0 0 0 0 0 · · · 0 0


P,N

(13)

In order to apply CS, a dictionary Ψ from the DFT
was considered, to take advantage of the process in-
herent to the IFDT and DFT which occurs in OFMD.
The sparse reconstruction algorithms employed are
OMP and CoSaMP, which use as input parameters
the compressed data Ĥp, the matrix Θ = ΦΨH and
the total number of iterations. The maximum num-
ber of iterations should be related to the number K
of nonzero elements of the signal to be constructed,
in this case, the number of pilot carriers [13]. In this
way, the estimated channel Ĥe, is obtained in the form
indicated in equation (14).

Ĥe = 0N

Ĥe = Ĥe + ΨH
N,i × αi with i = 1, 2, . . . , N (14)
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3.2. Channel estimation with CS and LDPC

As indicated in section 2, the sensing matrix Φ should
fulfill the IRP criterion to be able to appropriately
recover the sparse signal; however, the matrix used in
equation (13) fulfills this criterion at the restriction
limits, since it is not random. Therefore, it is devel-
oped a matrix ΦLDP C of pilot positions that improves
this requirement. In a form similar to equation (13),
each nonzero element corresponds to a position of each
subpilot carrier in equation (15) [6].

ΦLDP C =



Nf︷︸︸︷
1 0 0 0 0 0 · · · 0 0
0 0 0 1 0 0 · · · 0 0
0 0 0 0 0 1 · · · 0 0
...

...
...

...
...

... . . . ...
...

0 0 0 0 0 0 · · · 0 0


P,N

(15)
Equation (15) maintains the distance between the

pilot subcarriers Nf as variable and pseudorandom,
due to the use of the LDPC algorithms with which ma-
trix HLDP C is constructed. For the design of HLDP C ,
the number of «1»s per row is equal to 1, taking into
account the number of pilot subcarriers. In addition,
the total percentage of nonzero elements should be
equal to the number of pilots P .

After obtaining matrix ΦLDP C , the process contin-
ues with the estimation of the channel, using the sparse
reconstruction algorithms OMP and CoSaMP, consid-
ering the distribution of pilots obtained in ΦLDP C .

3.3. Implemented scenarios

This work applied different scenarios, keeping a focus
for Long Term Evolution (LTE) systems. For this pur-
pose, characteristics of LTE indicated in [31,34] such
as number of subcarriers, reference symbols, null sub-
carriers and length of the CP, were taken into account.
A separation of 7.5 KHz between subcarriers was used,
since the performance decays with the prolonged use of
15 KHz. Then, the implemented bandwidth was 1.92
MHz. It is necessary to clarify that a greater number
of subcarriers was not used, as it is allowed by LTE,
because the processing of the source code was carried
out from the computer, and not on the FPGA of the
equipment.

The first scenario implemented does not use the
channel encoder and has the following characteristics:

• IQ sample rate: 1.92 MS/s.

• Frequency of carrier: 1.99 GHz.

• Modulation: 4 QAM.

• Iterations of the OMP algorithm: 5.

• Length of the transmitted message (bits train):
1600.

• Number of samples in the receiver: 3 ×× total
of transmitted data.

• Total number of OFDM subcarriers: 256.

• Total of subcarriers with data + pilot subcarriers:
150.

• Gain of the transmitter: 15.5 - 21 dB.

• Sensitivity of the receiver: 0 dB.

In order to obtain the results of the behavior of
the channel estimators for the different sparse recon-
struction algorithms, OMP and CoSaMP, as well as
of the linear estimator, two separate SDR located in
the test laboratory (indoor) at a considerable distance,
as shown in Figure 2, were used. The distance was
considered as constant, and the power of the equip-
ment were modified to obtain variations of the signal
to noise ratio (SNR), and subject the different channel
estimators to the BER analysis.

For the second scenario the previous conditions
were repeated, adding the LDPC channel encoder us-
ing the following configuration:

• Iterations of the propagation algorithm for the
LDPC decoding: 100.

• Matrix HLDP C with G=40 and E=20.

• Type of LDPC matrix in the encoder: staircase
with sparsity of «1»s between 5 and 10%.

The final scenario of analysis is implemented with
variable distance between transmitter and receiver,
also in a closed environment to evaluate the channel in
more rigorous conditions. The distance of separation
between the SDRs considered the length, the physical
distribution of the laboratory with distances between
4 and 10 meters, and a constant power which does not
saturate the channel.

The variation of distance enabled to recreate chan-
nels with great fading, generating an increase of the
multipath effect to evaluate the behavior of the esti-
mators. The frequency of transmission is 2.4 Ghz, thus
coexisting with the Wi-Fi network of the laboratory;
this causes a continuous variation in the channel.

This scenario was worked in the presence of stu-
dents, using an LDPC encoder with the following con-
figuration:

• IQ sample rate: 1.92 MS/s.

• Frequency of carrier: 2.4 GHz.

• Modulation: 4 QAM.

• Iterations of the OMP algorithm: 5.
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• Iterations of the propagation algorithm for the
LDPC decoding: 100.

• Matrix HLDP C with G=40 and E=20.

• Length of the transmitted message (bits train):
1240.

• Number of samples in the receiver: 2× total of
transmitted data.

• Total number of OFDM subcarriers: 256.

• Total of subcarriers with data + pilot subcarriers:
150.

• Type of LDPC matrix in the encoder: staircase
with sparsity of «1»s between 5 and 10%, 10 and
20% and 20 and 30%.

• Gain of the transmitter: 20 dB.

• Sensitivity of the receiver: 20 dB.

4. Analysis of the results

4.1. Scenarios 1 and 2 – BER Analysis

In the implementation of the OMP algorithm, the
number of iterations should be chosen such that K
corresponds to the number of nonzero elements of the
signal to be recovered. In order to define this value,
multiple tests were conducted seeking to minimize the
error in the estimation of the channel, obtaining that
the appropriate value for this algorithm to converge
is K = 5, corresponding to the minimum number of
subcarriers used.

Figure 4 shows the behavior of the BER with 5
and 25 pilot subcarriers, for the estimators based on
OMP, CoSaMP and the linear estimator for the first
scenario.

Figure 4. BER analysis without channel encoder.

It can be observed in Figure 4 that at low levels
of SNR, the linear estimator exhibits a lower perfor-
mance with respect to the employed estimators based
on the CS paradigm. With 25 pilot subcarriers, the
channel estimators achieve a considerable reduction
in the probability of bits loss. In these tests, the algo-
rithms CoSaMP and OMP worked with the ΦLDP C

matrix and in its absence (comb-type pilot subcarriers
distribution).

Figure 5 shows the behavior of the BER for 5 chan-
nel estimators, using the configurations of the second
scenario. Then, according to what is expected with
the use of a channel encoder, it can be observed in
Figure 5(a) a clear improvement with respect to the
previous case. The linear estimator exhibits the worst
results for a low SNR. On the other hand, the CoSaMP
estimators have a similar performance using matrix
ΦLDP C or not using it. However, the version with ma-
trix ΦLDP C exhibits a better performance. Also, as
the SNR improves, the CoSaMP estimator without
matrix ΦLDP C has a slight improvement, but both
continuing with the same trend in their behavior. On
the other hand, the OMP estimators exhibit a lower
performance compared with the CoSaMP, taking into
account that the version with matrix ΦLDP C is the
one that offers the worst results for this particular
algorithm.

Figure 5(b) shows the results of the performance
of the estimators regarding the BER, using 25 pilot
subcarriers for each of them. It can be observed that
the linear estimator has the greatest probability of bit
error for a low SNR, showing the worst performance
among the estimators analyzed. Nevertheless, when
the SNR a priori exceeds the value of 3.5 dB its per-
formance improves, obtaining the smallest probability
of bit error compared to the other estimators.

(a)

(b)

Figure 5. BER analysis with LDPC channel encoder: (a)
BER with 5 pilots (b) BER with 25 pilots.
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4.2. Scenario 3 - Analysis for variable distances

Figures 6 and 7 correspond to the behavior of the
linear estimator, and of the estimators based on CS
with and without matrix ΦLDP C .

Figure 6 shows that the linear estimator has a
better performance at a very short distance, which
corresponds with the previous results in BER analy-
sis. Nevertheless, as the distance increases, the perfor-
mance of this channel estimator is drastically reduced.
The CoSaMP estimator with ΦLDP C is better com-
pared with the estimator that uses OMP. It should be
indicated that this figure takes into account the results
using from 5 to 25 pilot subcarriers.

Figure 6. BER Analysis for different distances.

Since the channel decoder uses as input the re-
sponses of the channel estimators, the percentage of
values that such decoder could not resolve was ana-
lyzed in this scenario. In this way, Figure 7 shows the
percentage of null values (NaN) in contrast with the
distance variations for each channel estimator.

Figure 7. Analysis of the convergence of the channel
decoder according to the response of the estimators at
different distances.

Figure 7 also confirms the previous results, remark-
ing the same trend in the estimators. The linear es-
timator works better at short distances, and the CS
estimators have better performance than the linear
ones for noisy channels, which is verified when the
distance is increased.

4.3. Analysis of the bandwidth

Figure 8 shows the relationship between the bandwidth
used by the pilot subcarriers and the bandwidth for
sending information in an OFDM symbol. In this way,

using 5 pilot subcarriers instead of 25 corresponds to
an improvement of 13.33% in spectral efficiency. This
improvement corresponds to the use of the channel
estimators based on CS, as seen in Figure 8.

Figure 8. Bandwidth occupied at different number of
pilots.

5. Conclusions

According to the results obtained, the CoSaMP es-
timators exhibit a better performance for low levels
of SNR with the use of matrix ΦLDP C . The OMP
estimators show a behavior similar to the CoSaMP,
even though with smaller performance. Thereby, with
the results obtained it is deducted that, a linear es-
timator works with the channel estimation problem
with very small computational complexity. Neverthe-
less, when the channel is very noisy, due mainly to the
multipath, it demands more pilot subcarriers to try to
maintain the performance, which reduces the effective
bandwidth. In contrast, the estimators based on CS
used in this work, besides maintaining low computa-
tional complexity, show an adequate performance for
noisy channels enabling data transfer in such channels,
considering that an indoor environment was evaluated.

The use of the CS paradigm improves while the
IRP and null space properties are guaranteed; in this
case, the channel may be considered as sparse because
the number of pilot subcarriers is sparse.

In addition, implementing a sensing matrix de-
signed based on the concept of LDPC matrices has
enabled to improve the performance of the estima-
tors based on CS, and this improvement is clearer for
the estimator that uses OMP. The CoSaMP estimator
with ΦLDP C showed to be the best estimator in this
working situation together with the channel encoder
used.

Among the future works, it will be considered to
implement channel estimation and prior processing
procedures in the FPGA device, to enable that the
communication between the equipment and the data
source can use a higher data transmission rate.
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