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Abstract Resumen
The view factor between surfaces is essential in radia-
tive heat transfer. Currently, there are no analytical
solutions to evaluate the view factors between tri-
angular geometries with common edges and angle θ
due to the high mathematical complexity associated
with their development. For these configurations, the
literature only has Sauer’s graphical solutions, which
generate average errors of 12%. This study developed
an approximate method that does not involve high
mathematical complexity and guarantees a fit of less
than 12%. For this purpose, 32 different geometric
configurations were studied (8 basic and 24 derived),
obtaining the solutions for each evaluated case. 42
different transmitter and receiver dimensions were
used to validate the models obtained. The vision fac-
tors were computed in each case using the analytical
solution (AS), the numerical solution obtained with
Simpson’s 1/3 multiple rules (SMR) with five inter-
vals, and Bretzhtsov’s cross-root (BCR). The results
obtained in each of the eight base cases were com-
pared. In all cases evaluated, the BCR showed the
best fits with an error of ±6% in more than 90%
of the samples, while the SMR showed an average
scatter of ±6% in 65% of the data. The practical
nature of the contribution and the reasonable fitting
values obtained show that this proposal is a suitable
tool for thermal engineering.

El factor de visión entre superficies es esencial en
la transferencia de calor por radiación. En la actu-
alidad, para evaluar los factores de visión entre ge-
ometrías triangulares con bordes comunes y ángulo
θ no se dispone de soluciones analíticas, debido a la
elevada complejidad matemática asociada a su desa-
rrollo. Para estas configuraciones, la literatura solo
tiene las soluciones gráficas de Sauer, cuyo uso genera
errores medios del 12 %. En este trabajo se desar-
rolla un método aproximado que no genere una alta
complejidad matemática y que garantice un ajuste
inferior al 12 %. Para este propósito fueron estudiadas
32 configuraciones geométricas diferentes (8 básicas
y 24 derivadas), siendo obtenidas las soluciones para
cada uno de los casos evaluados. Para la validación
de los modelos obtenidos se usaron 42 dimensiones
diferentes de emisor y receptor, siendo computados en
cada caso los factores de visión mediante la solución
analítica (SA), la solución numérica obtenida con la
regla múltiple de Simpson 1/3 (RMS) con cinco inter-
valos y mediante la raíz cruzada de Bretzhtsov (RCB),
comparándose finalmente los resultados obtenidos en
cada uno los ocho casos básicos. En todos los casos
evaluados, la RCB mostró los mejores ajustes, con
un error de ±6 % en más del 90 % de las muestras,
mientras que la RMS mostró una dispersión media
de ±6 % en el 65 % de los datos. La naturaleza prác-
tica de la contribución y los valores razonables de
ajuste obtenidos, establecen a la propuesta como una
herramienta adecuada para su uso en la ingeniería
térmica.
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1. Introduction

It is required to evaluate the thermal radiation between
surfaces in thermal engineering. The vision factor es-
tablishes what fraction of the radiant energy emitted
by one surface is intercepted by another [1].

The geometrical relationship between two surfaces
and its influence on the view factor has been stud-
ied for decades, obtaining numerical and analytical
solutions for different geometrical configurations [2–5].
For example, Howell extensively compiled view factors
with more than 320 different configurations [6].

The accelerated leap in using computational tech-
niques has generalized the implementation of com-
mercial programs based on the finite element method
(FEM) to solve thermal radiation problems [7–10].

Three-dimensional edge problems are reduced to
surfaces with common edges and angle θ included.
However, shape factor algebra is tedious for these ge-
ometries, so numerical solutions such as FEM are pre-
ferred [11–13].

In FEM, meshes generally use triangular elements
and rarely use rectangles or squares unless the overall
geometry is a perfect cube. Determining an analytical
solution for the view factor between triangular geome-
tries requires sums of multiple integrals due to changing
integration contours. In many cases, the solutions are
not elementary functions, requiring the manipulation
of inverse trigonometric functions, polylogarithms, and
sums of infinite series [14].

This makes direct integration extremely tedious
for unshared or without common edges geometries,
so numerical integration is preferred. For this reason,
analytical solutions for these types of geometries are
lacking [15].

Using SMR with five intervals, the view factors were
plotted for several perpendicular triangular geometries
with common edges [16]. However, their graphical inter-
pretation generated mean errors of 12 %, demonstrat-
ing that they do not apply to FEM since they cannot
be discretized. In the specialized technical literature,
only this graphical solution is available to obtain the
view factors between triangular geometries [6–13].

The BCR method provides a proper fit during the
approximation of complex functions, so it can be used
to create the expressions required in the FEM dis-
cretization. The BCR method is similar to the FEM
because its mathematical conception is based on the
formation of nodes, obtaining the polynomial fits from
the interconnection of the nodes [17]. Considering the
above, it is demonstrated that there is a lack of ana-
lytical solutions (exact or approximate) to estimate
the view factors between triangular geometries with
common edges and angle θ included.

Therefore, this study aims to develop approximate
solutions to calculate the view factors between tri-
angular geometries with common edges and angle θ

included, without involving high mathematical com-
plexity and guaranteeing a good fit concerning the SA.
Thus, it is possible to establish a new analysis method
for use in the FEM.

This research develops the exact analytical solu-
tions for eight basic triangular geometries and their
respective BCRs. For comparison, 42 examples with
various aspect ratios were calculated for each geometry,
using the AS, BCR, and SMR.

The practical nature of the contribution and the
reasonable fitting values obtained demonstrate that
this proposal is a suitable tool to be applied in thermal
engineering and related practices that require thermal
radiation calculations between triangular geometries.

2. Materials y methods

2.1. Definition of the view factor

The view factor F12 depends on the position and geo-
metrical configuration of the emitting surface A1 and
the receiving surface A2, defined as the fraction of the
radiation leaving the former and intercepted by the
latter, which is expressed as [18], in equation (1).

F12 = 1
πA1

∫
A1

∫
A2

cos O1 cos O2

r2 dA2 dA1 (1)

Where: O1, O2− angles between the normal vec-
tor of the areas dA1 and dA2 and the line connecting
the center of the surfaces A1 and A2, respectively. r–
distance between the centers of surfaces A1 and A2,
(see Figure 1).

Figure 1. Basic geometry of the view factor

Equation (1) requires a double integration over the
surfaces, which is complex and time-consuming since a
large set of immediate integrals must be manipulated
and subsequently factorized.

Numerical approximations can simplify the anal-
ysis because a suitable fit can be obtained with an
appropriate set of intervals. For three-dimensional (3-
D) configurations, various solution methods, such as
contour integration, are available [19–24].
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This work uses contour integration to obtain the
view factor of the eight geometries analyzed. To approx-
imate the special functions generated in the integration,
the BCR method is used.

2.2. Mesh creation for surface elements

In modern engineering, triangular elements are widely
used to generate meshes. In contrast, rectangular or

square elements are rarely used, except in cases where
the overall geometry is a perfect cube. Formulating
this type of geometry requires a complex mathematical
treatment that includes sums of the quadruple integral
equation (1) caused by the variation of the limits in
the projection on each coordinate axis. The viewing
factor between two rectangular surfaces of the same
width, with common edge and angle θ included, is
given by equation (2) (see Figure 2).

f(1) = Fa−b = sin2θ

πA1

∫ L

0
dy1

∫ D

0
dx

∫ W

0
dz

∫ D

0

xz

{(y1 − y2)2 + x2 + z2 − 2xzcos θ}2 dy2 (2)

The following substitutions are used to evaluate
equation (2).

After evaluating equation (2), we obtain the follow-
ing solution f(1), (equation (4)).

X = W/D;Y = L/D;R =
√
X2 + Y 2 − 2XY cos θ

(3)

f(1) = 1
πY



− sin 2θ
4

{
Y 2tan −1 (

X
Y

csc θ − cot θ
)

+ X2tan −1 (
Y
X

csc θ − cot θ
)

+ XY sin θ +
(

π
2 − θ

) (
X2 + Y 2)}

+

+ 1
4 ln

{{
X2

R2

(
1+X2

1+R2

)cos 2θ
}X2sin2 θ (

Y 2+Y 2R2

R2+Y 2R2

)Y 2sin2 2θ (
(1+X2)(1+Y 2)

1+R2

)cos2 θ+1
}

+

+(sin3 θ cos θ)tan−1
(

Y sin θ
√

X2+cot2 θ+1
X2−Y Xcos θ+1

) √
X4 + X2(cot2 θ + 1) + Xtan−1 (

1
X

)
+

+Y tan−1 (
1
Y

)
− Rcot−1(R) + sin 2θ

2

∫ Y

0

√
Z2 + cot2 θ + 1 tan−1

(
Xsin θ

√
z

2 +cot2 θ+1
z2−zXcos θ

+ 1
)

dz


(4)

In equations (2), (3) and (4), the angle θ is given in
radians. Equation (4) is very complex; for this reason,
the last integral was not solved because its solution
can be obtained numerically using Simpson’s 1/3 rule
(with at least eight intervals).

Drawing diagonal lines divides the emitting surface
A1 and receiving surface A2 into eight triangular ge-
ometries. Applying the shape algebra for the geometry
in Figure 3, 1

2n
n−1 = 1

2 44−1 = 32 combinations of view
factors are obtained (see Figure 3). The analyzed ge-
ometry is symmetric; therefore, it is possible to define
seven basic cases, as shown in Figure 4.

Case 1: Right triangle to rectangle, with common
side and angle θ between both surfaces.

Case 2: Right triangle to right triangle, with com-
mon side and angle θ between both surfaces: vertices
at a common point.

Case 3: Right triangle to right triangle, with com-
mon side and angle θ between both surfaces: vertices
at opposite ends.

Case 4: Isosceles triangle to rectangle, with com-
mon side and angle θ between both surfaces.

Case 5: Right triangle to right triangle of different
size, with angle θ between both surfaces: vertices at a
common point.

Case 6: Right triangle to right triangle of different
size, with angle θ between both surfaces: vertices at
opposite ends.

Case 7: Perpendicular right triangles with an equal

edge and arranged in opposite directions.
The view factors for the remaining cases can be

obtained using the sum rule.

Figure 2. Rectangles of equal width, with common edge
and angle θ included

Figure 3. Division of rectangular surfaces into triangular
elements
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Case 1 Case 2 Case 3 Case 4

Case 5 Case 6 Case 7

Figure 4. Basic configurations for triangular geometries

2.3. Modeling of the view factor. Case 1

In Case 1 (see Figure 5), it is satisfied that the equation
(5).

cos O1 = zsin θ
r ; cos O2 = xsin θ

r

r = (y1 − y1)2 + x2 + z2 − 2xzcos θ (5)

Figure 5. Basic Geometry for Case 1

Substituting equation (5) in equation (1), the view
factor F12 is given by equation (6).

f2 = sin2 θ
πA1

∫ L

0 dy1
∫ y1D/L

0 dx
∫ D

0 dz·
·
∫ W

0
xz

{(y1−y2)2+x2+z2−2xzcos θ}2 dy2
(6)

In equation (6), the change indicated in equation
(7) was made to perform the integration.

W = a;D = b;L = c (7)

Equation (6) is first integrated on the emitting sur-
face A1, obtaining a sum of integrals, which is given
by equation (8).

After a complex process in which it was necessary
to solve nn = 44 = 256 primitive functions, the sum
of double integrals of equation (8) was solved, whose
solution is given in equation (9).

f2 = 1
πA1

∫ b

0 dy
∫ c

0

{
tan−1 (

1
z

)
+ zsin2 θ

2 ln
[

z2(z2−2azcos θ+1+a2)
(1+z2)(a2+z2−2azcos θ)

]
− zsin θcos θ

[
π
2 − θ + tan−1 (

a−zcos θ
zsin θ

)]
+

+cos θ
√

1 + z2sin2 θ
[
tan−1

(
a−zcos θ√
1+z2sin2 θ

)
+ tan−1

(
zcos θ√

1+z2sin2 θ

)]
+ acos θ−z√

a2+z2−2azcos θ
tan−1

(
1√

a2+z2−2azcos θ

)}
dz

(8)

f(2) = 2f(1)

{
a2b2

8(a2+b2) ln

(
b2+c2

(a2+c2)2

)
+ a2b4

4(a2+b2)2 ln
(

b(a2+c2)
a(b2+c2)

)
+ a4b2

4(a2+b2)2 ln
(

b
a

)
+ a2c2

8(a2+b2) ln
( (b2+c2)(a2+b2+c2)

c2(a2+c2)

)
+

+ a2

8 ln

(
a4(a2+b2+c2)2

(a2+b2)2(a2+c2)

)
+ b2

8 ln
( (a2+b2)(a2+c2)

b2(a2+b2+c2)

)
+ c2

8 ln
(

c2(a2+b2+c2)
(a2+b2)(a2+c2)

)
+ 3

4 ab tan−1 (
b
a

)
+ 1

2 bc tan−1

− 1
2 b

√
a2 + c2tan−1

(
b√

a2+c2

)
− a4

8(a2+b2) ln
(
a2 + c2)

+ ab2(2a−πb)
8(a2+b2) +

+
a2b2

(
b4

a2+b2 −b2−c2
)

2(a2+b2)
3
2

√
b2+c2− b4

a2+b2

tan−1

 (a2+b2)
3
2

√
b2+c2− b4

a2+b2

(a2+b2)
3
2
(

b2+c2− b4
a2+b2 −b2{(a2+b2)−b2}

)
 −

− 1
2

∫ a

0

[
bx2

a
√

x2+c
tan−1

(
a
√

x2+c

x2+c2+ b2
a2 (x2−ax)

)
+ bx√

x2+c
tan−1

(
b
a

x−b√
x2+c

)]}
dx

(9)
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In equation (9), the term f(1) is obtained by equa-
tion (4). Due to the complexity of equation (9), the
last integral is not solved, and its solution is obtained
numerically using the SMR (twelve intervals are recom-
mended). Equation (9) is transformed as the equation
(10).

F12 = f(n) = 2F(1) · φn (10)
Equation (10) is then transformed by dividing each

dimensional variable by the length of the common edge
b. The result is shown below the equation (11).

1 = b/b;X = a/b;Y = c/b

R =
√
X2 + Y 2 − 2XY cos θ (11)

Applying in equation (9) the change of variables
of equation (11), the analytical solution for Case 1 is
obtained, which is given by equation (12).

f(2) = 2f(1)

{
X2

8(X2+1) ln
(

Y 2+1
R4

)
+ X2

4(X2+1)2 ln
(

R2

X(Y 2+1)

)
+ X2Y 2

8(X2+1) ln
( (Y 2+1)(R2+1)

Y 2R2

)
+

+ X4

4(X2+1)2 ln
(

1
X

)
− X4

8(X2+1) ln
(
R2)

+ 3X
4 tan−1 (

1
X

)
+ Y

2 tan−1 (
1
Y

)
− R

2 tan−1 (
1
R

)
+

+ 1
8 ln

{(
X4(R2+1)2

R2(X2+1)2

)X2 (
Y 2(R2+1)
R2(X2+1)

)Y 2 (
R2(X2+1)

R2+1

)}
+ 2X2−π

8(X2+1)−

+
X2

(
Y 2− X2+2

X2+1

)
2(X2+1)

3
2

√
Y 2− X2+2

X2−1

tan−1

 (X2+1)
3
2

√
Y 2− X2+2

X2+1

(X2+1)
(

Y 2− X2+2
X2+1

)
−X2

 −

(12)

Equation (12) is a combination of variables (Y ;X).
Evaluating this equation may be difficult because it
is necessary to solve polylogarithms, sums of infinite
series, and inverse trigonometric functions. However,
using Bretzhtsov’s cross-root method, it is possible to
obtain an approximate result, facilitating the calcula-
tion of the view factor.

To implement the cross-root method, nodes are
constructed using prefixed values (Y ;X), which are
joined using diagonal lines forming the families of
curves an and bn. In this study, the values Y =
(0.1; 0.2; 0.5; 1; 3; 10) and X = (0.1; 0.3; 0.6; 1; 3; 6; 10)
are used.

Tables 1 and 2 summarize the combination of varia-
bles (Y ;X) for each node and the nodes that integrate
each curve an and bn, respectively. Figure 6 plots the
families of curves an and bn.

The next step is to compute the vision factor using
equation (12) for each of the combinations of variables
(Y ;X) in Table 1, plotting them in a F12;X diagram,
as shown in Figure 7. The union of the nodes along
the x-axis makes it possible to create a third family
of curves cn. A particularity is that all the nodes inte-
grating the same curve cn have the same value of the
variable Y , as shown in Table 1. Table 3 summarizes
the nodes integrating each cn curve.

Table 1. Combinations of variables (Y ; X) for each node

node (Y,X) node (Y,X) node (Y,X) node (Y,X)
1 3 ; 0.1 12 1 ; 0.6 23 0.5 ; 1 34 0.5 ; 6
2 10 ; 0.3 13 3 ; 1 24 1 ; 3 35 1 ; 10
3 1 ; 0.1 14 10 ; 3 25 3 ; 6 36 0.1 3
4 3 ; 0.3 15 0.1 ; 0.1 26 10 ; 10 37 0.2 ; 6
5 10 ; 0.6 16 0.2 ; 0.3 27 0.1 ; 0.6 38 0.5 ; 10
6 0.5 ; 0.1 17 0.5 ; 0.6 28 0.2 ; 1 39 0.1 ; 6
7 1 ; 0.3 18 1 ; 1 29 0.5 ; 3 40 0.2 ; 10
8 3 ; 0.6 19 3 ; 3 30 1 ; 6 41 10 ; 0.1
9 10 ; 1 20 10 ; 6 31 3 ; 10 42 0.1 ; 10
10 0.2 ; 0.1 21 0.1 ; 0.3 32 0.1 ; 1
11 0.5 ; 0.3 22 0.2 ; 0.6 33 0.2 ; 3

Table 2. Nodes integrating each curve an and bn

an nodes bn nodes
a1 1-2 b1 10-21
a2 3-4-5 b2 6-16-27
a3 6-7-8-9 b3 3-11-22-32
a4 10-11-12-13-14 b4 1-7-17-28-36
a5 15-16-17-18-19-20 b5 41-4-12-23-33-39
a6 21-22-23-24-25-26 b6 2-8-18-29-37-42
a7 27-28-29-30-31 b7 5-13-24-34-40
a8 32-33-34-35 b8 9-19-30-38
a9 36-37-38 b9 14-25-35
a10 39-40 b10 20-31

Table 3. Nodes integrating each cn curve

cn nodes cn nodes
c1 15-21-27-32-36-39-42 c4 3-7-12-18-24-30-35
c2 10-16-22-28-33-37-40 c5 1-4-8-13-19-25-31
c3 6-11-17-2329-34-38 c6 41-2-5-6-14-20-26
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Figure 6. Families of curves an and bn

Figure 7. Scheme for applying cross-roots

Each curve of the families an, bn, cn is approx-
imated individually by the Least Squares Method
(LSM), using a third-degree polynomial in the form
mX3 + nX2 + oX + p, thus establishing a dependence
between the view factor F12 and the X variable. Figure
8 shows the application of the method for curves a5,
b5, c4.

Table 4 shows the values of the constants m, n, o,
p obtained by applying LMS to all the curves an, bn,
cn. The m, n, o, p values are averaged in each curve,
thus obtaining the approximate functions An, Bn, Cn.

For each curve, the apparent angle of transmissi-
bility (see Figure 8) is given by the equation (13)

ψ = tan−1
(
X

Y

)
(13)

Therefore, Bretzhtsov’s cross-root is given by the
equation (14).

φn = Anψ
2 +Bnψ + Cn (14)

Table 4 shows the constants m, n, o, p for the poly-
nomials An, Bn, Cn. For the approximations, the X
variables were used, keeping the Y variables constant;
therefore, to apply the cross roots, the Y variables were
alternated by X, obtaining the following equations (15)
to (17) for the polynomials An, Bn, Cn.

An = −0.022Y 3 + 0.316Y 2 − 0.89Y + 0.5 (15)

Bn = 0.056Y 3 − 0.783Y 2 + 2.23Y − 1.43 (16)

Cn = 0.03Y 3 + 0.407Y 2 − 1.07Y + 2.02 (17)

(a)

(b)

(c)

Figure 8. Approximation by Least Squares (a), curve a5,
(b) curve b5, (c) curve c4

Substituting equations (15) through (17) into equa-
tion (14), we obtain that Bretzhtsov’s cross-root for
Case 1 is given by equation (18).
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φn =
(
−0.022Y 3 + 0.316Y 2 − 0.89Y + 0.5

)
ψ2 +

(
0.056Y 3 − 0.783Y 2 + 2.23Y − 1.43

)
ψ−

−0.03Y 3 + 0.407Y 2 − 1.07Y + 2.02 (18)

Table 4. Constants m, n, o, p obtained by applying LMS

Curve m n o p
a2 0 0.186 –1.023 0.51
a3 0.549 0.32 –0.528 0.91
a4 –0.278 0.28 –0.88 0.352
a5 –0.337 0.52 –0.514 0.373
a6 –0.11 0.64 –2.48 0.484
a7 0 0.66 –0.95 0.456
a8 0 –0.03 –0.713 0.447
a9 0 –0.05 –0.03 0.468

average An –0.022 0.316 –0.89 0.5
Curve m n o p
b1 0 0 3.06 –1.181
b2 0 –1.96 2.97 –1.53
b3 0 –1.18 2.34 –1.44
b4 0.424 –0.592 1.98 –1.67
b5 0.019 –0.197 2.583 –1.068

b6 0.106 –1.91 3.22 –2.99
b7 0.011 –0.75 2.37 –1.07
b8 0 –0.93 2.29 –1.123
b9 0 –0.31 1.19 –1.285
b10 0 0 0.29 –0.94

average Bn 0.056 –0.783 2.23 –1.43
Curve m n o p
c1 0 0.16 –1.69 2.374
c2 0.018 0.28 –1.103 2.307
c3 0.02 0.34 –1.161 2.183
c4 0.002 –0.035 –1.173 2.088
c5 0.14 0.99 –0.92 2.16
c6 0 0.71 –0.37 1.01

average Cn 0.03 0.407 –1.07 2.02

Substituting equation (18) in equation (10), the
view factor for Case 1 is obtained, which is given by
equation (19).

f(2) = 2f(1) · {
(
−0.022Y 3 + 0.316Y 2 − 0.89Y + 0.5

)
ψ2 +

(
0.056Y 3 − 0.783Y 2 + 2.23Y − 1.43

)
ψ−

−0.03Y 3 + 0.407Y 2 − 1.07Y + 2.02 } (19)

3. Results and discussion

For practical engineering use, equation (19) is much
simpler than the analytical solution (SA) of equation
(12). The percentage deviation (error) is computed
with respect to the analytical solution and is obtained
by the following relation in equation (20) [25].

D% = 100 · SA− V al

SA
(20)

Where: D% is the percentage of deviation. SA is
the view factor obtained by the analytical solution. V al
is the view factor obtained by approximate methods.

To calculate the D% values, the view factors are
computed for the 42 combinations of variables (Y ;X)
in Table 1, using the AS, the SMR with five intervals,
and the view factors obtained with the BCR.

Figure 9 plots the D% values obtained with equa-
tion (18) for the view factors calculated by SMR and
BCR, adjusted in error bands of ±3% and ±6%.

Figure 9. D% obtained with equation (18) for Case 1

For Case 1, Figure 9 shows that BCRs have a bet-
ter fit with respect to SA, with a mean error of ±3%
for 100% of the (Y ;X) points analyzed. On the con-
trary, the view factors obtained with SMR have a lower
fit with respect to the AS, with mean errors of ±3%
and ±6% for 54,8% and 85,7% of the (Y ;X) points
evaluated, respectively.

3.1. Modeling and validation of Cases 2 to 7

For Cases 2 to 7 (see Figure 4), mathematically, the
view factor F12 is given by equations (21) to (26).

Case 2 f(3) = sin2θ
πA1

∫ L

0 dy1
∫ y1D/L

0 dx
∫ W

0 dy2
∫ y2D/L

0
xz

{(y1−y2)2+x2+z2−2xzcosθ}2 dz (21)
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Case 3 f(4) = sin2θ
πA1

∫ L

0 dy1
∫ y1D/L

0 dx
∫ W

0 dy2
∫ y2D/L

0
xz

{(y1−y2)2+x2+z2−2xzcosθ}2 dz (22)

Case 4 f(5) = sin2θ
πA1

∫ L/2
0 dy1

∫ y1D/L

0 dx
∫ W

0 dz
∫ y2D/L

0
xz

{(y1−y2)2+x2+z2−2xzcosθ}2 dy2 (23)

Case 5 f(6) = sin2θ
πA1

∫ L/2
0 dy1

∫ y1D/L

0 dx
∫ W

0 dy2
∫ y2D/L

0
xz

{(y1−y2)2+x2+z2−2xzcosθ}2 dz (24)

Case 6 f(7) = sin2θ
πA1

∫ L/2
0 dy1

∫ 0
y1D/L

dx
∫ W

0 dy2
∫ y2D/L

0
xz

{(y1−y2)2+x2+z2−2xzcosθ}2 dz (25)

Case 7 f(8) = sin2θ
πA1

∫ L/2
0 dy1

∫ 0
−y1D/L

dx
∫ W/2

0 dy2
∫ y2D/L

0
xz

{(y1−y2)2+x2+z2−2xzcosθ}2 dz (26)

The analytical solutions of equations (21) to (26)
are long and complex because they require the handling
of Spence functions, Gamma function, sums of poly-
logarithms, modified Bessel functions of first species
and zero, one, and two orders; for this reason, they are

not presented in this study.
For the solution of equations (21) to (26), the same

procedure for Case 1 is used, obtaining the following
approximations to calculate the view factor for Cases
2 to 7.

Case 2 f(3) = 2f(1) ·
{

(−0.001Y 3 + 0.033Y 2 − 0.14Y + 0.265)ψ2 + (0.011Y 3 − 0.177Y 2 + 0.7Y − 0.615)ψ−
−0.01Y 3 + 0.142Y 2 − 0.475Y + 1.29

}
(27)

Case 3 f(4) = 2f(1) ·
{

(−0.031Y 3 + 0.424Y 2 − 1.257Y + 1.1)ψ2 + (0.071Y 3 − 0.975Y 2 + 2.92Y − 2.06)ψ−
−0.034Y 3 + 0.462Y 2 − 1.268Y + 1.6

}
(28)

Case 4 f(5) = 2f(1) ·
{

(−0.01Y 2 + 0.24Y + 0.67)ψ2 + (0.02Y 2 − 0.31Y − 2.2)ψ − 0.02Y 2 + 0.27Y + 3
}
(29)

Case 5 f(6) = 2f(1) ·
{

(−0.02Y 3 + 0.29Y 2 − 1.1Y + 0.6)ψ2 + (0.06Y 3 − 0.88Y 2 + 2.96Y − 4.41)ψ−
−0.04Y 3 + 0.55Y 2 − 1.41Y + 1.87

} (30)

Case 6 f(7) = 2f(1) ·
{

(−0.011Y 3 + 0.12Y 2 − 0.025Y + 0.52)ψ2 + (0.025Y 3 − 0.307Y 2 + 0.49Y − 1.64)ψ−
−0.134Y 3 + 0.183Y 2 − 0.35Y + 2.47

}
(31)

Case 7 f(8) = 2f(1) ·
{

(0.0152 − 0.108Y + 0.08)ψ2 + (−0.015Y 2 + 0.096Y + 0.048)ψ−
−0.001Y 2 + 0.04Y + 0.058

} (32)

Figure 10 plots in ±3% and ±6% error band the
D% obtained with equation (18) for the view factors
calculated with SMR and BCR for Cases 2 to 7.

For Case 2, Figure 10 shows that BCRs have the
best fit with respect to AS, with a mean error of ±3%
in 97.6% of the (Y ;X) points analyzed. On the con-
trary, the view factors obtained with SMR have a
lower fit with respect to AS, with mean errors of ±3%
and ±6% in 28,5% and 64.3% of the (Y ;X) points

evaluated, respectively.

For Case 3, Figure 10 shows that BCRs have a
better fit with respect to AS, with mean errors of ±3%
and ±6% in 92.9% and 100% of the (Y ;X) points
analyzed. The view factors obtained with SMR have a
lower fit with respect to AS, computing mean errors
of ±3% and ±6% in 38.1% and 69.0% of the (Y ;X)
points evaluated, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. D% values obtained with equation (18) for the cases analyzed. (a) Case 2; (b) Case 3; (c) Case 4; (d) Case
5; (e) Case 6; (f) Case 7

For Case 4, Figure 10 shows that BCRs have a
better fit with respect to AS with mean errors of ±3%
and ±6% in 90.5% and 100% of the (Y ;X) points
analyzed. In contrast, the view factors obtained with
SMR have a lower fit with respect to AS, with mean
errors of ±3% and ±6% in 21.4% and 61.9% of the
(Y ;X) points evaluated, respectively.

For Case 5, Figure 10 shows that BCRs have a
better fit with respect to AS with mean errors of ±3%
and ±6% in 95.2% and 100% of the (Y ;X) points
analyzed. The view factors obtained with SMR have a
lower fit with respect to AS, computing mean errors
of ±3% and ±6% in 26.2% and 71.4% of the (Y ;X)

points evaluated, respectively.
For Case 6, Figure 10 shows that BCRs have a bet-

ter fit with respect to AS with mean errors of ±3% in
100% of the (Y ;X) points analyzed. On the contrary,
the view factors obtained with SMR have a lower fit
with respect to AS, with mean errors of ±3% and ±6%
in 31.0% and 81.0% of the (Y ;X) points evaluated,
respectively.

For Case 7, Figure 10 shows that BCRs have a bet-
ter fit with respect to AS with mean errors of ±3% in
100% of the (Y ;X) points analyzed. The view factors
obtained with SMR have a lower fit with respect to
AS, computing mean errors of ±3% and ±6% in 23.8%
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and 73.8% of the (Y ;X) points evaluated, respectively.

3.2. Other geometric configurations

In Figure 3, the emitting and receiving surfaces are
divided into four triangular surfaces, resulting in
0.5nn−1 = 0.5 · 44−1 = 32 possible combinations (see

Figure 11). Using the view factors f(1) to f(8), it is
possible to obtain the view factors for the remaining
configurations by applying the rule of sums and the
algebra of form factors. Table 5 shows the relationships
for computing the view factor for the configurations
in Figure 11.

Table 5. View factor settings for triangular surfaces

Case F(1−2) · · · f(n) Case F(1−2) · · · f(n)

Case 8 f(9) = f(5) Case 20 f(21) = 3f(3) + f(8) − 2f(6) − 2f(7)
Case 9 f(10) = f(5) Case 21 f(22) = 4f(1) + 3f(6) + 3f(7) − 3f(3) − 2f(4) − 4f(5) − f(8)
Case 10 f(11) = 2f(1) − f(2) Case 22 f(23) = 4f(5) + f(3) + f(8) − 2f(6) − 2f(7)
Case 11 f(12) = f(6) + f(7) Case 23 f(24) = 5f(3) + 4f(4) + 5f(5) + f(8) − 4f(1) − 4f(2) − 4f(6) − 4f(7)
Case 12 f(13) = 2f(2) − f(5) Case 24 f(25) = 2f(1) + f(4) − 2f(2)
Case 13 f(14) = 4f(1) + f(5) − 4f(2) Case 25 f(26) = 2f(1) + f(3) − 2f(2)
Case 14 f(15) = 2f(4) − f(6) − f(7) Case 26 f(27) = f(2) − f(3)
Case 15 f(16) = 4f(1) + f(6) + f(7) − 2f(3) − 2f(4) Case 27 f(28) = f(2) − f(4)
Case 16 f(17) = 2f(3) − f(6) − f(7) Case 28 f(29) = f(5) − f(6) − f(7)
Case 17 f(18) = f(3) + f(8) Case 29 f(30) = 2f(3) + 2f(4) + f(5) − 4f(2) − f(6) − f(7)
Case 18 f(19) = f(6) + f(7) − f(3) − f(8) Case 30 f(31) = 2f(2) + f(6) + f(7) − f(5) − 2f(4)
Case 19 f(20) = 4f(5) + f(3) + f(8) − 2f(6) − 2f(7) Case 31 f(32) = 2f(2) + f(6) + f(7) − f(5) − 2f(3)
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Case 8 Case 9 Case 10 Case 11

Case 12 Case 13 Case 14 Case 15

Case 16 Case 17 Case 18 Case 19

Case 20 Case 21 Case 22 Case 23

Case 24 Case 25 Case 26 Case 27

Case 28 Case 29 Case 30 Case 31

Figure 11. View factor settings for triangular surfaces



40 INGENIUS N.◦ 30, july-december of 2023

4. Conclusions

This study developed an approximate method to deter-
mine the view factor for 32 combinations of triangular
geometries with common edges and angle θ included,
located in a 3-D space.

To validate the proposed models, 42 examples with
various aspect ratios were evaluated for each geometry
of the eight basic cases, comparing the results obtained
by the AS with those of the SMR with five intervals
and those computed by the proposed method with
BCR.

In all the cases evaluated, the RCB showed the
best fits with an error of ±6% in more than 90% of the
samples, and the SMR showed an average dispersion of
±6% in 65% of the data, confirming the validity of the
hypothesis on its use. For the remaining 24 geometric
configurations studied, the basic relations for calculat-
ing the view factor from the expressions obtained for
the eight basic cases were presented.

The practical nature of the contribution and the
reasonable fitting values obtained demonstrate that
this proposal is a suitable tool to be applied in ther-
mal engineering and radiation heat transfer calculation
tasks.

Due to the lack of similar precedents in the litera-
ture, the proposed method highlights this research’s
scientific and practical value. The solutions provided
could be incorporated into the available catalogs for
calculating view factors.
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