Corrosion and tribocorrosion performance of commercial anodized aluminum alloys

Main Article Content

Samantha Rodriguez
Edwuin Jesus Carrasquero Rodriguez
Luis Marcelo Lopez Lopez
Jorge Isaac Fajardo Seminario


In this work were studied two commercial anodized aluminum alloys under conditions of corrosion and tribocorrosion. For two different types of anodizing electrolyte (H2SO4 and H2C2O4), a constant value of current density and two anodizing time (30 and 45 minutes) were used. Using techniques of Scanning Electron Microscopy (SEM) with Spectroscopy Energy Dispersive X-Ray (EDS) coupled, were characterized the alloys and morphologies of the surfaces formed in the oxide layers. Results obtained show large differences between the condition of anodized (A1) in sulfuric acid for 45 minutes in AA6061 alloy and anodized condition (D1) for the same time in oxalic acid for alloy AA8011. For sample (A1), the results reveals the formation of a morphology named "smudge" which is characteristic of the electrolytic solution used and for this case the average thickness was 5,95 ± 0,02 μm. For sample (D1), the average thickness was 3,14 ± 0,02 μm and revealing the generation of cavities along all surface area. Both corrosion tests in salt spray chamber, electrochemical potentiodynamic polarization and tribocorrosion found that the best behavior was obtained for sample (A1), with lower, average mass gain, corrosion current density and friction coefficient. The performance in all anodizing conditions was improved comparing against samples without anodized.
Abstract 236 | PDF (Español (España)) Downloads 397 HTML (Español (España)) Downloads 414


[1] M. J. Bartolomé, S. Feliu Jr., V. López, E. Escudero, J. A. González, and S. Feliu, “Efecto de las heterogeneidades superficiales de las aleaciones de aluminio sobre el crecimiento y propiedades de las capas anódicas,” Rev. Metal., vol. 43, no. 4, pp. 252–265, Aug. 2007.

[2] L. E. V. Guillen, Estudio Del Proceso de Anodizado en Aluminio 3003 Y 6063. EAE, 2012.

[3] G. E. Thompson, Y. Xu, P. Skeldon, K. Shimizu, S. H. Han, and G. C. Wood, “Anodic oxidation of aluminium,” Philos. Mag. B, vol. 55, no. 6, pp. 651–667, 1987.

[4] E. Álvarez-Ayuso, “Approaches for the treatment of waste streams of the aluminium anodising industry,” J. Hazard. Mater., vol. 164, no. 2, pp. 409–414, 2009.

[5] M. J. Bartolomé, J. F. del Rio, E. Escudero, S. Feliu, V. López, E. Otero, and J. A. González, “Behaviour of different bare and anodised aluminium alloys in the atmosphere,” Surf. Coat. Technol., vol. 202, no. 12, pp. 2783–2793, 2008.

[6] R. Jamaati, M. R. Toroghinejad, J. A. Szpunar, and D. Li, “Tribocorrosion behavior of aluminum/alumina composite manufactured by anodizing and ARB processes,” J. Mater. Eng. Perform., vol. 20, no. 9, pp. 1600–1605, 2011.

[7] X. Li, X. Nie, L. Wang, and D. O. Northwood, “Corrosion protection properties of anodic oxide coatings on an Al–Si alloy,” Surf. Coat. Technol., vol. 200, no. 5, pp. 1994–2000, 2005.

[8] J. R. Davis, J. R. Davis, and others, Aluminum and aluminum alloys. ASM international, 1993.

[9] A. Bautista, R. Lizarbe, E. Otero, V. López, and J. A. González, “Nuevas alternativas a los métodos industrialmente implantados para el sellado del aluminio anodizado,” Rev. Metal., vol. 35, no. 3, pp. 195–202, Jun. 1999.

[10] ASTM International, “ASTM B-117, Standard Practice for Operating Salt Spray (Fog) Apparatus,” ASTM Int. 1997 Ed., 1997.

[11] G. ASTM, Standard test method for conducting potentiodynamic polarization resistance measurements. 2009.

[12] B. W. Madsen, “Standard guide for determining amount of synergism between wear and corrosion,” ASTM G119-93 Annu. Book ASTM Stand., vol. 3, pp. 507–512, 1994.

[13] J. L. Gazapo and J. Gea, “Anodizing of aluminium,” TALAT Lect., vol. 5203, 1994.

[14] C. V. Hernandez, F. N. Jimenez, and C. L. L. Calderon, “Crecimiento de películas de óxido de aluminio por métodos electroquímicos,” Sci. Tech., vol. 1, no. 34, 2007.

[15] J. J. Suay, E. Gimenez, T. Rodrıguez, K. Habbib, and J. J. Saura, “Characterization of anodized and sealed aluminium by EIS,” Corros. Sci., vol. 45, no. 3, pp. 611–624, 2003.