Wear of the cutting tool in turning dry steel AISI 316L

Main Article Content

Yoandrys Morales Tamayo http://orcid.org/0000-0001-7456-1490
Yusimit Karina Zamora Hernández
Roberto Félix Beltrán Reyna
Kimberly Magaly López Cedeño
Ringo John López Bustamante


The present experimental study focuses on determining statistical models to predict flank wear during dry turning of AISI 316L stainless steel using two cutting inserts. Cutting parameters were compared using analysis of variance and simple regression. As a main result the significant effect of cutting feed and main time was found. Statistical models were used to estimate flank wear, as well as the mean absolute errors of each equation. The best performance corresponded to the GC2015 insert according to the regression equations.
Abstract 339 | PDF (Español (España)) Downloads 440 HTML (Español (España)) Downloads 392


[1] İ. Asiltürk y S. Neşeli "Multi response optimisation of cnc turning parameters via taguchi method-based response surface analysis". Measurement. vol. 45 pp. 785-794, 2012.

[2] A. E. Diniz, Á. R. Machado y J. G. Corrêa "Tool wear mechanisms in the machining of steels and stainless steels". The International Journal of Advanced Manufacturing Technology. vol. pp. 1-12, 2016.

[3] O. Pereira, A. Rodríguez, A. I. Fernández-Abia, J. Barreiro y L. N. López de Lacalle "Cryogenic and minimum quantity lubrication for an eco-efficiency turning of aisi 304". Journal of Cleaner Production. vol. 139 pp. 440-449, 2016.

[4] S. E. Cordes "Thermal stability of γ-alumina pvd coatings and analysis of their performance in machining of austenitic stainless steels". CIRP Journal of Manufacturing Science and Technology. vol. 5 pp. 20-25, 2012.

[5] A. Shokrani, V. Dhokia y S. T. Newman "Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids". International Journal of Machine Tools and Manufacture. vol. 57 pp. 83-101, 2012.

[6] M. Nalbant y Y. Yildiz "Effect of cryogenic cooling in milling process of aisi 304 stainless steel". Transactions of Nonferrous Metals Society of China. vol. 21 pp. 72-79, 2011.

[7] S. Saketi, J. Östby y M. Olsson "Influence of tool surface topography on the material transfer tendency and tool wear in the turning of 316l stainless steel". Wear. vol. 368–369 pp. 239-252, 2016.

[8] ANSI/ASME 1985. Tool-life testing with single-point turning tools. B94.55M. New York. USA, American National Standard: 47.

[9] G. Bartarya y S. K. Choudhury "State of the art in hard turning". International Journal of Machine Tools and Manufacture. vol. 53 pp. 1-14, 2012.

[10] D. Jianxin, Z. Jiantou, Z. Hui y Y. Pei "Wear mechanisms of cemented carbide tools in dry cutting of precipitation hardening semi-austenitic stainless steels". Wear. vol. 270 pp. 520-527, 2011.

[11] R. Suresh, S. Basavarajappa, V. N. Gaitonde y G. L. Samuel "Machinability investigations on hardened aisi 4340 steel using coated carbide insert". International Journal of Refractory Metals and Hard Materials. vol. 33 pp. 75-86, 2012.

[12] N. Galanis y D. Manolakos "Surface roughness prediction in turning of femoral head". The International Journal of Advanced Manufacturing Technology. vol. 51 pp. 79-86, 2010.

[13] A. Hamdan, A. Sarhan y M. Hamdi "An optimization method of the machining parameters in high-speed machining of stainless steel using coated carbide tool for best surface finish". The International Journal of Advanced Manufacturing Technology. vol. 58 pp. 81-91, 2012.