The Effect of Chemical Composition on Mechanical Behavior Of Galvanized Coatings By Hot Dip: A Review

Main Article Content

Yraima Rico O.
Edwuin Carrasquero


In recent years, a great interest has been generated in the investigation of galvanized coatings, modifying them in order to improve the performance in the conditions of service. These modifications seek a significant improvement in the properties of the galvanized coating, whether in corrosion resistance, weldability or mechanical properties. The demands generated by the multiple applications of these coatings, where the coated substrate is subjected to plastic deformations (stamping, bending and laminating), requires the greater ductility of the coatings. For this reason, chemical compositions of the immersion baths have been developed, making it possible to considerably modify the microstructure of the coatings and thus their mechanical properties. This work aims to perform a bibliographic review on the chemical composition of the immersion baths, their influence on the microstructure and techniques used to determine the ductility and adhesion in galvanized coatings by hot dip.
Abstract 470 | PDF (Español (España)) Downloads 468 HTML (Español (España)) Downloads 688


[1] ASM Metal Handbook. Surface Engineering. ASM International. U.S.A. 2002, pp. 1068-1075.

[2] A. R. Marder, “The metallurgy of zinc-coated steel”. Progress in Materials Science. Volume 45, pp. 191-271, 2000.

[3] L. Jintang, Ch. Chunshan, K. Gang, X. Qiaoyu, Ch. Jinhong. “Influence of silicon on the α-Fe/Γ interface of hot-dip galvanized steels”. Surface & Coatings Technology. Volume 200, pp.5277-5281, 2006.

[4] G.K. Mandal, D. Mandal, S.K. Das, R. Balasubramaniam and S.P. Mehrotra. “Microstructural study of galvanized coatings formed in pure as well as commercial grade zinc baths”. Transactions of the Indian Institute of Metals. Volume 62, pp. 35-40, 2009.

[5] N. Pistofidis, G. Vourlias, S. Konidaris, E. Pavlidou, A. Stergiou, G. Stergioudis. “Microstructure of zinc hot-dip galvanized coatings used for corrosion protection”. Materials Letters. Volume 60, pp. 786-789, 2006.

[6] F. García, A. Salinas, E. Nava. “The role of Si and Ti additions on the formation of the alloy layer at the interface of hot-dip Al–Zn coatings on steel strips”. Materials Letters. Volume 60, pp. 775-778, 2006.

[7] ASM Metal Handbook. Alloy Phases diagrams. ASM International. U.S.A. 2002, pp. 335-336, 875-876.

[8] Rico Y, Hernández J. “Influencia de la velocidad de enfriamiento sobre la microestructura y comportamiento a la corrosión de recubrimientos Zn-7Al por inmersión en caliente sobre acero”. Rev. LatinAm. Metal. Mat. Volume 35, pp. 269-275, 2015.

[9] M. Manna, G. Naidu, N. Rani, N. Bandyopadhyay. “Characterization of coating on rebar surface using Hot-dip Zn and Zn-4.9Al-0.1 misch metal bath”. Surface and Coatings Technology. Volume 202, pp. 1510-1516, 2008.

[10] Y. Chen, Y. Liua, H. Tua, Ch. Wua, X. Sua, J. Wang. “Effect of Ti on the growth of the Fe–Al layer in a hot dipped Zn–6Al–3Mg coating”. Surface & Coatings Technology. Volume 275, pp. 90-97, 2015.

[11] F. Goodwin, R. Wright. “The Process Metallurgy of Zinc-Coated Steel Wire and Galfan® Bath Management”. Conference Proceedings- Wire Association International Incorporated. Pp. 135-139, USA, 2001.

[12] N. Coni, M. L. Gipiela, A. S. C. M. D’Oliveira, P. V. P. Marcondes. “Study of the Mechanical Properties of the Hot Dip Galvanized Steel and Galvalume®”. J. of the Braz. Soc. of Mech. Sci. & Eng. Volume XXXI, pp. 319-326, 2009.

[13] G. González, A. Pacheco. “Evaluación microestructural de recubrimientos de Zn-4Al, Zn-6Al y Zn-10Al sobre un acero SAE 1020 sometido a ensayos de tracción”. Acta Microscopica. Volume 19, pp. 78- 83, 2010.

[14] Norma ASTM E-290: “Standard Test Methods for Bend Testing of Material for Ductility, Annual Book of ASTM Standards, Vol 01.06, 2002.

[15] I. Roa. “Estudio del comportamiento mecánico ante deformaciones y vibraciones de recubrimientos de galvanizado obtenidos por inmersión en caliente en baños con contenidos variables de Níquel y Aluminio”. Tesis de grado. Universidad de Concepción Chile, 2004.

[16] E. Tzimas, G. Papadimitriou. “Cracking mechanisms in high temperature hot-dip galvanized coatings”. Surface and Coatings Technology. Volume 145, pp. 176-185, 2001.

[17] R. Parisot, S. Forest, A. Pineau, F. Grillon, X. Demonet, J. Mataign. “Deformation and Damage Mechanisms of Zinc Coatings on Hot-Dip Galvanized Steel Sheets: Part I. Deformation Modes”. Metallurgical and Materials Transactions. Volume 35, pp. 797-811, 2004.

[18] S. Ploypech, Y. Boonyongmaneerat, P. Jearanaisilawong. “Crack initiation and propagation of galvanized coatings hot-dipped at 450 °C under bending loads”. Surface & Coatings Technology. Volume 206, pp. 3758-376, 2012.