Carbon Monoxide Concentration Monitoring Using Long-Rang Technology

Main Article Content

José Ignacio Vega-Luna http://orcid.org/0000-0002-4226-2936
Mario Alberto Lagos-Acosta http://orcid.org/0000-0003-0455-007X
Gerardo Salgado-Guzmán http://orcid.org/0000-0002-0581-7410

Abstract

A remote monitoring system for carbon monoxide (CO) sensors is presented in a hospital using Long-Range transceivers. A highly toxic gas that can´t be detected by humans and damages health is CO. There are hospital areas where air purity is greater than 90% and monitored continuously. The objective of this work was to design a wireless system that reports to a server ,located on the Internet, the concentration levels of CO around ten sensors distributed around the areas of a hospital. A low-power wide area network (LPWAN) was deployed using ten Long-Range technology transceivers and a gateway. Each node of the LPWAN consists of a CO sensor, a global positioning system module, a quartz liquid crystal display, an alert generator, a microcontroller and a Long-Range transceiver. The nodes transmit the CO levels to the gateway and the gateway sends them to the server. When a CO level higher than a threshold value is detected, an alert is triggered. The system detects CO concentrations of 10 to 1,000 ppm. The farthest network node is located 1,200 meters from the gateway and the range achieved was 11.8 Kilometers.
Abstract 426 | PDF (Español (España)) Downloads 375 HTML (Español (España)) Downloads 481

References

[1] M. Sezdi, Y. Üzcan, "Clean room classification in the operating room" [online]. Medical Technologies National Congress (TIPTEKNO), pp. 1-4, Turkey, 2016. Disponible en: http://goo.gl/DHoRPi

[2] S. Yalvarmis, A. Ak, Y. Ülgen, "Which particule sizes and which nutrient medias should be used in order to observe microorganisms in the operating rooms?" [online]. 18th National Biomedical Engineering Meeting, pp. 1-4, Turkey, 2014. Disponible en: http://goo.gl/MB9lus

[3] G. Marques, R. Pitarma, "Health informatics for indoor air quality monitoring" [online]. 11th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1-6, Spain, 2016. Disponible en: http://goo.gl/7OIi3P

[4] U. Jaimini, T. Banerjee, W. Romine, "Investigation of an Indoor Air Quality Sensor for Asthma Management in Children" [online]. IEEE Sensors Letters, Volume: 1, Issue: 2, 2017. Disponible en: http://goo.gl/XY4fDs

[5] S. Sridharan, S. Mangalam, "Carbon monoxide risks and implications on maintenance-intensive fuel-burning appliances-A regulatory perspective" [online]. Annual Reliability and Maintainability Symposium (RAMS), pp. 1-7, USA, 2017. Disponible en: http://goo.gl/jTg8tu

[6] Z. Tang, W. Xiong, L. Chen, N. Jing, "A real-time system for air quality monitoring based on main-memory database" [online]. 24th International Conference on Geoinformatics, pp. 1-4, Ireland, 2016. Disponible en: http://goo.gl/FU8M0L

[7] R. M. Liaqat, A. Athar, N. A. Saqib, "Intelligent Agent Based System for Monitoring and Control of Hospital Management System" [online]. 2nd International Conference on Information Science and Security (ICISS), pp.1-5, South Korea, 2015. Disponible en: http://goo.gl/vZda2t

[8] E. Lackner, J. Krainer, R. Wimmer-Teubenbacher, "CMOS integrated tin dioxide gas sensors functionalized with bimetallic nanoparticles for improved carbon monoxide detection" [online]. IEEE SENSORS, pp. 1-3, US, 2016. Disponible en: http://goo.gl/SremNY

[9] S. O. Podgornyi, I. P. Demeshko, O. T. Podgornaya, "Cadmium telluride nanofilms application in carbon monoxide detection" [online]. Dynamics of Systems, Mechanisms and Machines (Dynamics), pp. 1-4, Russia, 2016. Disponible en: http://goo.gl/QMM2vv

[10] J. Kim, T. V. Dinh, I. Y. Choi, "Physical and chemical factors influencing the continuous monitoring of carbon monoxide using NDIR sensor" [online]. 9th International Conference on Sensing Technology (ICST), pp. 316-319, New Zealand, 2015. Disponible en: http://goo.gl/1yBdr3/

[11] P. Stefanski, R. Lewicki, J. Tarka, "Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor" [online]. Conference on Lasers and Electro-Optics (CLEO), pp. 1-2, USA, 2013. Disponible en: http://goo.gl/Hj19r7/

[12] M. Dong, L. Dianjun, G. Guohui, "Research on self-calibration carbon monoxide sensor for iron mines" [online]. 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), pp. 1426-1432, China, 2015. Disponible en: http://goo.gl/1p5FhK/

[13] J. B. Forsyth, T. L. Martin, D. Young-Corbett, "Feasibility of Intelligent Monitoring of Construction Workers for Carbon Monoxide Poisoning" [online]. IEEE Transactions on Automation Science and Engineering, Volume: 9, Issue: 3, pp. 505-515, 2012. Disponible en: http://goo.gl/3hIYlm/

[14] H. Yuan, J. Liu, L. Lei, "Characterizing pollution weather patterns using satellite carbon monoxide data" [online]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5724-5726, China, 2016. Disponible en: http://goo.gl/pxHyAs/

[15] J. Liu, K. Ding, A. Ding, "Vertical sensitivity of satellite remote sensing of atmospheric carbon monoxide" [online]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2234-2237, Italy, 2015. Disponible en: http://goo.gl/IaUIJj/

[16] A. Huong, X. Ngu, "Noninvasive diagnosis of carbon monoxide poisoning using Extended Modified Lambert Beer Model" [online]. 2nd International Conference on Electronic Design (ICED), pp. 265-269, Malaysia, 2014. Disponible en: http://goo.gl/lxAyTE/

[17] [18] N. Ahriman, A. Yulianto, M. Kusriyanto, "Wireless sensor network application for carbon monoxide monitoring" [online]. 9th International Conference on Telecommunication Systems Services and Applications (TSSA), pp. 1-4, Indonesia, 2015. Disponible en: http://goo.gl/U0ed35/

[18] M. Pies, R. Hajovsky, S. Ozana, "Wireless measurement of carbon monoxide concentration" [online]. 14th International Conference on Control, Automation and Systems (ICCAS 2014), pp. 567-571, South Korea, 2014. Disponible en: http://goo.gl/WM030u/

[19] S. Son, K. J. Park, E. C. Park, "Design of adaptive IEEE 802.11 WLAN in hospital environments" [online]. IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013), pp. 722-724, Portugal, 2013. Disponible en: http://goo.gl/mysiOB

[20] M. U. Al Rasyid, I. U. Nadhori, Y. T. Alnovinda, "CO and CO2 pollution monitoring based on wireless sensor network" [online]. IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), pp. 1-5, Indonesia, 2015. Disponible en: http://goo.gl/HoLcWm

[21] H. Ali, J. K. Soe, S. R. Weller, "A real-time ambient air quality monitoring wireless sensor network for schools in smart cities" [online]. IEEE First International Smart Cities Conference (ISC2), pp. 1-6, México, 2015. Disponible en: http://goo.gl/mxvXIa/

[22] H. A, Nograles; C. P. Agbay; I. S. Flores, "Low cost internet based wireless sensor network for air pollution monitoring using Zigbee module" [online]. Fourth International Conference on Digital Information and Communication Technology and its Applications (DICTAP), pp. 310-314, Thailand, 2014. Disponible en: http://goo.gl/vqRurX/

[23] P. A. Besari, M. Abdurohman, A. Rakhmatsyah, "Application of M2M to detect the air pollution" [online]. 3rd International Conference on Information and Communication Technology (ICoICT), pp. 304-309, Bali, 2015. Disponible en: http://goo.gl/X6cqoE/

[24] H. Jafari, X. Li, L. Qian, Y. Chen, "Community based sensing: A test bed for environment air quality monitoring using smartphone paired sensors" [online]. 36th IEEE Sarnoff Symposium, pp. 12-17, USA, 2015. Disponible en: http://goo.gl/XYPuwP/

[25] A. Bhatta, A. K. Mishra, "GSM-based commsense system to measure and estimate environmental changes" [online]. IEEE Aerospace and Electronic Systems Magazine, Volume: 32, Issue: 2, pp. 54-67, 2017. Disponible en: http://goo.gl/1FrNsS

[26] M. Werme, T. Eriksson, T. Righard, "Maintenance concept optimization-A new approach to LORA" [online]. Annual Reliability and Maintainability Symposium (RAMS), pp. 1-6, USA, 2017. Disponible en: http://goo.gl/17G44A

[27] V. A. Stan; R. S. Timnea, R. A. Gheorghiu, "Overview of high reliable radio data infrastructures for public automation applications: LoRa networks" [online]. 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. 1-4, Romania, 2016. Disponible en: http://goo.gl/NU7BZl

[28] A. J. Wixted, P. Kinnaird, H. Larijani, A. Tait, "Evaluation of LoRa and LoRaWAN for wireless sensor networks" [online]. IEEE SENSORS, pp. 1-3, USA, 2016, Disponible en: http://goo.gl/LuWjIV

[29] L. Gregora, L. Vojtech, M. Neruda, "Indoor signal propagation of LoRa technology" [online]. 17th International Conference on Mechatronics-Mechatronika (ME), pp.1-4, Czech Republic, 2016. Disponible en: http://goo.gl/nCeprZ

[30] D. Bankov, E. Khorov, A. Lyakhov, "On the Limits of LoRaWAN Channel Access" [online]. International Conference on Engineering and Telecommunication (EnT), pp. 10-14, Russia, 2016. Disponible en: http://goo.gl/tNjdJb

[31] F. Orfei, C. B. Mezzetti, F. Cottone, "Vibrations powered LoRa sensor: An electromechanical energy harvester working on a real bridge" [online]. IEEE SENSORS, pp. 1-3, USA, 2016. Disponible en: http://goo.gl/HT5E9m

[32] L. Li, J. Ren, Q. Zhu, "On the application of LoRa LPWAN technology in Sailing Monitoring System" [online]. 13th Annual Conference on Wireless On-demand Network Systems and Services (WONS), pp. 77-80, USA, 2017. Disponible en: http://goo.gl/ZZagkV

[33] S. Nambiar, A. Nikolaev, M. Greene, "Low-Cost Sensor System Design for In-Home Physical Activity Tracking" [online]. IEEE Journal of Translational Engineering in Health and Medicine, Volume: 4, 2016. Disponible en: http://goo.gl/8Xu4rF