Determination of the maximum compression pressure of a MEP based on a RNAR

Main Article Content

Wilmer Rafael Contreras Urgiles
Mauricio Arichávala
Cristian Jérez


In the present research the explanation of the applied methodology for the determination of the maximum pressure of compression of an engine of internal combustion alternative of ignited provoked (MEP), that is based on a study that starts from the characterization of the curves of the amperage rating of the starter motor. A protocol for data acquisition and subsequent statistical analysis is applied. The statistical values of the signal as energy, average, standard deviation, variance, kurtosis, asymmetry, maximum, minimum and crest factor are selected in function of the greater contribution of information for the characterization of the experiment; these values generate databases that are applied for the creation and training of a recurrent artificial neural network (RNAR) in which an absolute error of less than 2\% is obtained. In the first instance, the test methodology is applied in an engine assembled in a didactic bank and then the application of the method is applied in vehicles.
Abstract 494 | PDF (Español (España)) Downloads 6890 HTML (Español (España)) Downloads 331


[1] Covarrubias, R. F., & Covarrubias, A. G. F. (2013). Desarrollo de un sistema experto para el diagnóstico de fallas automotrices.
[2] Criollo Jadán, O. R., & Matute Bravo, H. M. (2014). Diagnóstico de fallos en la combustión para motores de combustión interna alternativos diésel por análisis de vibraciones.
[3] García Pamplona, J. (2007). Diseño de una sala de pruebas para motores alternativos de combustión interna.
[4] Fajardo Merchán, J. E., Urgilés, C., & Rafael, W. (2015). Diseño y construcción de un sistema prototipo para determinar la cilindrada total de un motor ciclo Otto por un método no invasivo mediante Labview (Doctoral dissertation, Quito, 2015.).
[5] Giarratano Joseph, Riley Garry, “Sistemas expertos, principios y programación”. Cuarta edición, International (Thomson Ed.). (2004), pp. 1-18. México.
[6] Khajavi, M. N., Nasiri, S., & Eslami, A. (2014). 1469. Combined fault detection and classification of internal combustion engine using neural network. Journal of Vibroengineering, 16(8).