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Abstract Resumen
In the present paper the behaviour of a hyperelastic
body is studied, considering the presence of one, two
and more spherical inclusions, under the effect of an
external tension load. The inclusions are modelled as
nonlinear elastic bodies that undergo small strains.
For the material constitutive relation, a relatively new
type of model is used, wherein the strains (linearized
strain) are assumed to be nonlinear functions of the
stresses. In particular, a function is used that keeps
the strains small, independently of the magnitude of
the external loads. In order to simplify the problem,
the hyperelastic medium and the inclusions are mod-
elled as axial-symmetric bodies. The finite element
method is used to obtain results for these bound-
ary value problems. The objective of using these new
models for elastic bodies in the case of the inclusions
is to study the behaviour of such bodies in the case
of concentration of stresses, which happens near the
interface with the surrounding matrix. From the re-
sults presented in this paper, it is possible to observe
that despite the relatively large magnitude for the
stresses, the strains for the inclusions remain small,
which would be closer to the actual behaviour of real
inclusions made of brittle materials, which cannot
show large strains.

En el presente artículo se estudia el comportamiento
de un sólido hiperelástico con una, dos y más inclu-
siones esféricas, bajo el efecto de una carga externa
de tracción. Las inclusiones se modelan como sólidos
elásticos con comportamiento no-lineal y que presen-
tan pequeñas deformaciones, usando un nuevo modelo
propuesto recientemente en la literatura, en donde las
deformaciones (caso infinitesimal) se expresan como
funciones no-lineales de las tensiones. En particular,
se consideran expresiones para dichas funciones que
aseguran que las deformaciones están limitadas en
cuanto a su magnitud independientemente de la mag-
nitud de las cargas externas. Como una forma de
simplificar el problema, el medio hiperelástico y las
inclusiones se modelan como sólidos axil-simétricos.
El método de elementos finitos es usado para obtener
resultados para estos problemas de valor de frontera.
El objetivo del uso de los nuevos modelos para cuerpos
elásticos para el caso de las inclusiones, es estudiar
el comportamiento de dichos cuerpos en el caso de
concentración de tensiones, lo cual ocurre cerca de
la zona de interface con la matriz. De los resultados
mostrados en este trabajo, es posible apreciar que
a pesar de los valores relativamente altos para las
tensiones, las deformaciones se mantienen pequeñas,
lo cual sería mucho más cercano al comportamiento
esperado en la realidad, cuando se trabaja con inclu-
siones hechas de un material frágil, el cual no puede
mostrar grandes deformaciones.

Keywords: Nonlinear elasticity, Strain limiting be-
haviour, Finite element method, Constitutive equa-
tions, Elastic bodies, Isotropic bodies
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1. Introduction

In Refs. [1–3] Rajagopal and co-workers have proposed
some new types of constitutive relations, which cannot
be classified as either Green or Cauchy elastic equa-
tions. If T and B are used to denote the Cauchy stress
tensor and the left Cauchy Green tensor, respectively,
one of such relations is f(T,B) = 0, and two special
cases that can be obtained from the above implicit
relation are the classical nonlinear constitutive equa-
tion for a Cauchy elastic body [4] T = g(B), and the
subclass B = h(T) (see, for example, Ref. [5]).

As a particular case, we assume that the gradient
of the displacement field is small. From the above equa-
tion B = h(T), we obtain ε = g(T), where ε is the
linearized strain tensor. This last constitutive equation
is very important on its own, since it could be used
to model the behaviour of some materials that can
show a nonlinear behaviour, but where the strains are
small, such as rock [6, 7], concrete [8] and some metal
alloys [9]. Another important use of ε = g(T) is in
the fracture mechanics analysis of brittle bodies [10],
where for some particular expressions for g(T), it can
be proved that for a crack in a brittle body, the magni-
tude of the strains are limited and do not go to infinite
near the tip of a crack, contrary to what happens when
the classical linearized elastic theory is used (see, for
example, Ref. [11]). It is very important to study the
behaviour of elastic bodies considering ε = g(T) for as
many different boundary value problems as possible,
in order to understand the capabilities and drawbacks
of these new constitutive models, and that is the main
objective of the present communication.

We are interested in studying the behaviour of
a hyper-elastic (Green solid) cylindrical sample that
can contain 1, 2 and 5 spherical inclusions, which are
located in a row in the central axis of the cylinder,
and which are equally separated from each other. The
inclusions are assumed to behave as nonlinear elastic
solids, using the new constitutive equation ε = g(T)
mentioned above1. For simplicity the composite sample
is modeled as an axial-symmetric body and a tension
load is applied on the upper part of the cylinder. The
finite element method is used to obtain results for the
boundary value problem. We are particularly inter-
ested in studying the behaviour of the stresses and
strains near the interface of the inclusions and the
surrounding hyper-elastic body. It is assumed that
the spherical inclusions are perfectly attached to the
hyper-elastic matrix. The hypothesis of our work is
that the new classes of constitutive equations ε = g(T)
can be useful for the modelling of brittle bodies, in
particular in the case we have large stresses, but where
the strains must remain small. For a cylindrical sample
with inclusions, such concentration of stresses appear

near the interface of the matrix and the inclusion, and
as it is shown in the present work, considering a partic-
ular expression for g(T), that we indeed obtain small
strains for the spherical inclusions. For the modelling
of such composite materials is very important to ob-
tain results as precise as possible of the stresses near
the interface, as the most common failure, which such
composites show, corresponds to the debonding of the
particles with the surrounding matrix.

This work is structured into the following sections.
In Section 2 we present the basic equations for the
models, in particular, the constitutive equations used
for the spherical inclusions. In Section 3 we give details
about the models to be analyzed. In Section 4, some
numerical results for the different cases analyzed are
presented. We end in Section 5 with some concluding
remarks about the numerical results presented in this
paper.

2. Basic equations

2.1. Kinematics and equation of motion

Let X denotes a point of a body B, the reference
and current configurations are denoted as Br and Bt,
respectively, and the position of point X in such con-
figurations is denoted as X and x, respectively. It is
assumed that there is a one-to-one mapping χ such
that x = χ(X, t), where t is time. The deformation
gradient F, the left and the right Cauchy-Green ten-
sors B, C, respectively, the Green Saint-Venant strain
tensor E, the displacement field u and the linearized
strain tensor ε are defined as:

F = ∂χ

∂X , B = FFT, C = FTF, (1)

E = 1
2(C− I), u = x−X, (2)

ε = 1
2(∇u +∇uT). (3)

Where ∇ is the gradient operator with respect to
the reference configuration. We assume 0 < J < ∞,
where J = det F.

The equation of motion is

ρẍ = divT + ρb, (4)

where ρ is the density of the body in the current con-
figuration, T is the Cauchy stress tensor, b represents
the body forces in the current configuration, ¨( ) is
the second derivative in time, and div is the divergence
operator defined in the current configuration.

1See Ref. [12] for a recent work on the modelling of composites considering an extension of such new constitutive equations
ε = g(T) for viscoelastic deformations.
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In our work we consider quasi-static deformations,
therefore the left side of (4) is zero. More details about
the above relations can be found, for example, in
Ref. [13].

2.2. Constitutive equations

We consider a body composed of two materials, a ma-
trix which is assumed to be hyper-elastic, filled with
spherical inclusions which are assumed to behave as
nonlinear elastic bodies undergoing small strains. For
the hyper-elastic matrix cylinder, we assume there ex-
ists a function W = W (F), called the energy function,
such that (see, for example, Ref. [4])

T = J−1F∂W
∂F , (5)

where we use the convention
(
∂W
∂F
)
αi

= ∂W
∂Fiα

. In this
work, we use the neo-Hookean compressible model

W = µ

2 (Ī1 − 3) + κ

2 (J − 1)2, (6)

where Ī1 = J−1/3I1, I1 = tr(C), where tr is the trace
of a second order tensor, and µ, κ are material con-
stants.

For the inclusions, we assume that they are elastic
bodies that develop nonlinear behaviour when strains
are small. As indicated in the introduction section, re-
cently some new types of constitutive relations for elas-
tic bodies have been proposed in the literature [1–3],
one of such relations is of the form

f(T,B) = 0, (7)

where the Cauchy elastic body T = g(B) is a special
subclass of the above relation, plus the new constitu-
tive equation

B = h(T). (8)

Assuming that |∇u| ∼ O(δ)| where δ � 1, then
B ≈ 2ε + I (we also have E ≈ ε), and from (8) we
obtain (see, for example, Refs. [14, 15])

ε = g(T), (9)

where in general g(T) is a nonlinear function of the
stress tensor. We consider a special case of (9), where
we assume there exists a scalar function Π = Π(T)
such that (see Ref. [16])

ε = g(T) = ∂Π
∂T . (10)

If Π is assumed to be an isotropic function, we have
that Π(T) = Π(J1, J2, J3), where Ji, i = 1, 2, 3 are the
following set of invariants of the stress tensor

J1 = trT, J2 = 1
2tr(T2), J3 = 1

3tr(T3). (11)

And from (10), we obtain the representation

ε = Π1I + Π2T + Π3T2, (12)

where Πi = ∂Π
∂Ji

, i = 1, 2, 3.

The following particular expression for Π is consid-
ered:

Π(J1, J2) = −α
β

ln[cosh(βJ1)] + γ

ι

√
1 + 2ιJ2, (13)

where α, β, γ and ι are constants.
Eq. (13) has been used in Ref. [17] to study prob-

lems, where independently of the magnitude of the
stresses, the strains remains small. It is necessary to
point out that this form for Π and the numerical values
of the constant that are shown in Chart 1, have not
been obtained from experimental data. In Figures 1,
2 presented in Ref. [17], some plots for the behaviour
of a cylinder under tension are shown, where it is pos-
sible to observe that the strains remain always small
independently of the magnitude of the stresses. As
indicated in the introduction section, such particular
expressions could be important for fracture analysis of
brittle bodies.

Finally, in Chart 1 the numerical values of the
constants used in (6) and (13) are presented.

Chart 1. Values for the constants used in (6) and (13).

α β γ ι µ κ
1/Pa 1/Pa 1/Pa2 Pa Pa

0.01 9.277× 10−8 4.020× 10−9 10−14 80.194× 106 150× 106

2.3. Boundary value problems

For the hyper-elastic cylinder, the boundary value
problem is the classical formulation in nonlinear elas-
ticity, where the function χ(X) is found by solving
the equilibrium equation in the reference configuration
(see, for example, Ref. [4])2:

DivS = 0, (14)

where S = J−1FT is the nominal stress tensor. From
(5), S = ∂W

∂F , and Div is the divergence operator with
respect to the reference configuration. Eq. (14) must
be solved using the boundary conditions

STN = ŝ X ∈ ∂Bsr , χ = x̂ X ∈ ∂Bxr , (15)

where ∂Br is the boundary of the hyper-elastic body
in the reference configuration, ∂Bsr ∪ ∂Bxr = ∂Br,
∂Bsr ∩ ∂Bxr = ∅, N is the outward normal vector to
the surface of the body in the reference configuration,
ŝ is the external traction (described in the reference

2In this paper we do not consider the effect of body forces.
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configuration), and x̂ is a known deformation field on
some part of the surface of the hyper-elastic body.

For the inclusions we consider small strains and
displacements. And following what has been presented
in Refs. [16,17], for the boundary value problem cor-
responds to find T and u by solving (see (3), (4) and
(10))

divT = 0, 1
2(∇u +∇uT) = ∂Π

∂T (16)

simultaneously. In the above system we have 9 equa-
tions for a fully 3D problem, and 9 unknowns that
correspond to the components of the stress tensor
and the displacement field. Regarding the boundary
conditions we have in general

Tn = t̂ x ∈ ∂Btt, u = û x ∈ ∂But , (17)

where ∂Bt is the surface of the inclusion and x ∈
∂Btt ∪ ∂But = ∂Bt, ∂Btt ∩ ∂But = ∅, n is the normal
vector to the surface of the inclusion, t̂ is the external
load and û is a known displacement field on a part of
the surface of the inclusion. Since for the inclusion we
assumed that |∇u| ∼ O(δ)| where δ � 1, then there is
no need for distinguishing between the reference and
the current configuration for that body.

3. Axial-symmetric models

For simplicity, the hyper-elastic matrix is considered
to be a cylinder of radius R and length L (see, for
example, Figure 1).

For a cylinder with one inclusion, it is assumed that
the inclusion is located in the center of the cylinder,
and that the radius of that spherical body is ri (see
Figure 1). It is assumed that there is axial symmetry,
therefore, we study a plane problem using the coordi-
nates r and z (radial and axial axis, respectively).

r

z

R

ri L

σ

Figure 1. Hyper-elastic cylinder with one inclusion.

The center of the sphere is located at z = L/2. On
the surface z = L we apply a uniform axial load σ. On

the surface z = 0 we assume that the cylinder cannot
move in the axial direction, but it is free to expand in
the radial direction, i.e., uz(r, 0) = 0. On the surface
r = R we assume that the cylinder is free. Finally, the
spherical inclusion is assumed to be perfectly bonded
to the the surrounding hyper-elastic cylinder, i.e., the
displacement field is continuous across the surface of
the inclusion.

In Figure 2, an hyper-elastic cylinder with two
inclusions is depicted.

r

z

R

ri

L

σ

h

Figure 2. Hyper-elastic cylinder with two inclusions.

These two inclusions are of the same radius, are
separated by a distance h between centers (the central
point between them is located in the middle of the
cylinder in the axial line defining it.) The two inclu-
sions are assumed to behave as nonlinear elastic bodies
using (10). The rest of the boundary conditions for
the problem are the same as the problem presented in
Figure 1.

In Figure 3, the case of an hyper-elastic cylinder
with five inclusions in a row is presented.

r

z

R

ri

L

σ

h

Figure 3. Hyper-elastic cylinder with five inclusions.
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The inclusions are separated to each other by the
same distance h. As in the previous case, they are
modelled using (10), and the center point for all the
inclusions is located in the center of the cylinder.

For the different models mentioned previously, it
was assumed that ri = 1 mm. Regarding R, L and h,
different cases were considered as indicated in Tables
2-4.

Chart 2. Cases studied for the cylinder with one inclusion.

R 2 ri 3 ri 4 ri 5 ri
L 6 ri 8 ri 10 ri

For the case of a cylinder with two inclusions, we
assume R = 5 ri and L = 10 ri (the parameter h is
presented in Chart 3.)

Chart 3. Cases studied for the cylinder with two inclusions.

h 2.1 ri 2.2 ri 2.3 ri 2.4 ri 2.5 ri 3 ri 4 ri 5 ri

Finally, for the case of a cylinder with five inclu-
sions, we assume R = 5 ri and L = 4(h+ ri), and for
h we have the cases presented in Chart 4.

Chart 4. Cases studied for the cylinder with five inclusions.

h 2.1 ri 2.2 ri 2.3 ri 2.4 ri 2.5 ri 3 ri 4 ri 5 ri 6 ri 7 ri

The boundary value problems were solved using the
finite element method with an in-house finite element
code (details of the method in which the code is based
can be found, for example, in Ref. [16].)

4. Numerical results

4.1. Results for one inclusion

In this section we show some results for a cylinder
with one spherical inclusion located on its center (see
Figure 1), for the cases indicated in Chart 2.

In Figure 4, results are presented for the axial and
radial components of the normalized stress and the
components of the strain, for different values for R,
for the case L = 10ri.
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Figure 4. Results for the normalized components of the
stress T̄zz and strain εzz, for the line r = 0, 0 ≤ z̄ ≤ L̄/2,
and the component T̄rr of the stress and εrr of the strain,
for the line z = 0, 0 ≤ r̄ ≤ R̄. This is for the case L = 10 ri,
where: (a) R = 2 ri (b) R = 3 ri (c) R = 4 ri (d) R = 5 ri.

The normalized components of the stress that ap-
pear in Figure 4 are defined as

T̄zz = Tzz
σ
, T̄rr = Trr

σ
, (18)

where σ is the uniform load applied on the upper
surface of the cylinder (see Figure 1). The strains are
in %.

The results for the axial components of the normal-
ized stress and strain T̄zz and εzz presented in Figure 4,
respectively, are shown for the line r = 0, 0 ≤ z̄ ≤ L̄/2,
where

z̄ = z

ri
, L̄ = L

ri
. (19)

The results for the radial components of the nor-
malized stress and strain T̄rr and εrr presented in
Figure 4, respectively, are shown for the line z = 0,
0 ≤ r̄ ≤ R̄, where

r̄ = r

ri
, R̄ = R

ri
. (20)

In Figure 5 we show similar results as in Figure 4,
for R = 5 ri and different cases for L.

0 1 2 3 4 5
1

1.5

2

2.5

 

 

0 1 2 3 4 5
0

5

10

15

20

25

30

 

 

0 1 2 3 4 5
−0.2

−0.15

−0.1

−0.05

0

 

 

0 1 2 3 4 5
−8

−6

−4

−2

0

 

 

T̄
z
z

T̄
r
r

r̄r̄

z̄z̄

ε z
z

ε r
r

(a)
(a)

(a)

(a)

(b)
(b)

(b)

(b)

(c)
(c)

(c)

(c)

Figure 5. Results for the normalized components of the
stress T̄zz and strain εzz, for the line r = 0, 0 ≤ z̄ ≤ L̄,
and the component T̄rr of the stress and εrr of the strain,
for the line z = 0, 0 ≤ r̄ ≤ R̄. This is for the case R = 5 ri,
where (a) L = 6 ri (b) L = 8 ri (c) L = 10 ri.
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The results for T̄zz and εzz are shown for the line
r = 0, 0 ≤ z̄ ≤ L̄, while for T̄rr and εrr, the results
are shown for the line z = 0, 0 ≤ r̄ ≤ R̄.

In both Figures 4 and 5 the inclusion is located in
the region r̄ ≤ 1, z̄ ≤ 1, and due to the symmetry of
the problem, only the upper half part of the inclusion
and the cylinder is considered (see Figure 1).

In Figures 6-9 we show results for the radial and
axial components of the strain and the stress, for the
case R = 5ri, L = 10ri. The stresses are presented in
Pa.

Figure 6. Contour plot for εrr for the problem of one
inclusion.

Figure 7. Contour plot for Trr in Pa for the problem of
one inclusion.

Figure 8. Contour plot for εzz for the problem of one
inclusion.

Figure 9. Contour plot for Tzz in Pa for the problem of
one inclusion.

4.2. Results for two inclusions

Figure 10 depicts results for the axial and radial com-
ponents of the stress (normalized stresses, see (18))
and the strain, for the line r = 0, 0 ≤ z̄ ≤ L̄, for
different values for h as presented in Chart 3 for a
hyperelastic cylinder with two inclusions (see Figure
2).
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Figure 10. Results for the normalized components of the
stress T̄zz and strain εzz, for the line r = 0, 0 ≤ z̄ ≤ L̄,
where (a) h = 2.1 ri (b) h = 2.2 ri (c) h = 2.3 ri (d)
h = 2.4 ri (e) h = 2.5 ri (f) h = 3 ri (g) h = 4 ri (h)
h = 5 ri.

In Figures 11-14 we present results for the radial
and axial components of the strain and the stress, for
the case h = 2.5 ri (the stresses are in Pa.)
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Figure 11. Contour plot for εrr for the problem of two
inclusions.

Figure 12. Contour plot for Trr in Pa for the problem of
two inclusions.

Figure 13. Contour plot for εzz for the problem of two
inclusions.

Figure 14. Contour plot for Tzz in Pa for the problem of
two inclusions.

4.3. Results for five inclusions

Figure 15 presents results for the axial and radial com-
ponents of the stress (normalized stresses, see (18))
and the strain, for the line r = 0, 0 ≤ z̄ ≤ L̄ for a
hyperelastic cylinder with five inclusions (see Figure
3).
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Figure 15. Results for the normalized components of the
stress T̄zz and strain εzz, for the line r = 0, 0 ≤ z̄ ≤ L̄,
where (a) h = 2.1 ri (b) h = 2.2 ri (c) h = 2.3 ri (d)
h = 2.4 ri (e) h = 2.5 ri (f) h = 3 ri (g) h = 4 ri (h)
h = 5 ri (i) h = 6 ri (j) h = 7 ri.

In Figures 16-19 we present results for the radial
and axial components of the strain and the stress, for
the case h = 2.5 ri (the stresses are in Pa.)
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Figure 16. Contour plot for εrr for the problem of five
inclusions.

Figure 17. Contour plot for Trr in Pa for the problem of
five inclusions.

Figure 18. Contour plot for εzz for the problem of five
inclusions.

Figure 19. Contour plot for Tzz in Pa for the problem of
five inclusions.
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4.4. Discussion of the results

For the matrix with one particle, from Figure 4 cases
(c) and (d), it is observed there is no meaningful dif-
ference between the behaviour of the stress and the
strain, i.e., as expected for R large enough, the results
tend to be invariant of the size of the cylinder. For the
results presented in Figure 5, as in the previous case,
for L large enough, there is no much difference in the
behaviour of the body. From Figures 4 and 5, we ob-
serve that the component of the stress are continuous
across the surface of the inclusion, but the components
of the strain are not. In both cases, it is recognized
the presence of large stresses in the matrix material
near the interface with the inclusion, and for Tzz such
stresses are positive, which could eventually lead to
debonding of the composite. In fact, in Figure 7 we
recognize that there is a zone on the upper part of the
spherical inclusion (in the matrix), where the radial
stress Trr is positive, and that effect is much stronger
in the same zone for Tzz (see Figure 9).

For the cylinder with two spherical inclusions, from
Figure 10 we observe that there is a considerable dif-
ference in the behaviour of the composite if h is var-
ied. Compare for instance the results presented in
cases (a), (b) and (d) of that figure, where h = 2.1 ri,
h = 2.2 ri and h = 2.3 ri, respectively. The difference
in behaviour between Tzz and εzz is large (in particular
for the case (a) for Tzz.) In the plot for εzz, we ob-
serve the jump in the value for that component of the
strain across the interface between the inclusion and
the surrounding matrix. In Figures 12, 14 we notice
the large values for Trr and Tzz in the matrix, for the
zone connecting the two inclusions.

Finally, for the cylinder with five inclusions, as in
the previous case, from Figure 15 we notice large values
for εzz for the matrix material between the inclusions.
Also large values and rapid variations for Tzz in the
same zone are observed, especially for the cases (a),
(b) and (c). From Figures 16-19 we observe the same
large values for the components of the stress and the
strain in the zone near the inclusions.

5. Concluding remarks

In the present communication, we have studied the
behaviour of a composite consisting of a hyper-elastic
matrix with one, two and five spherical inclusions
that are modelled using some relatively new classes
of constitutive equations, in which, as a particular
case such inclusions undergo small strains indepen-
dently of the magnitude of the stresses. In several
of the previous works discussed in the introduction
section (see, for example, Refs. [10,17] and the refer-
ence mentioned therein), the main idea of studying
constitutive equations of the type (10), (13), was to
analyse the behaviour of the solutions for problems

exhibiting concentration of stresses, where from the
physical point of view, it is expected that the strain
remain small. This is the case of brittle bodies with
cracks (see the discussion in Ref. [14]). In the present
work, this has been also the purpose. Herein, problems
exhibiting concentration of stresses near the boundary
of inclusions were studied. From the results presented
in Section 4, it is observed that indeed there exists
concentration of stresses, but strains remain small in-
side the inclusions. The results presented in this paper
should be considered as the outcome of a new way
to study the problem of modelling the behaviour of
composite materials, where there is a soft matrix filled
with a relatively stiff and brittle inclusions.
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