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Abstract

The simple regression and artificial neural network
methods are techniques used in many industrial apli-
cations. This work developed two models in order to
predict the surface roughness in dry turning of AISI
316L stainless steel. In its implementation they were
considered various cutting parameters such as cutting
speed, feed, and machining time. The models obtained
by both methods were compared to develop a full
factorial design to increase reliability of the recorded
values of roughness. The analysis can be corrobo-
rated by the values of coefficients of determination
that the proposed models are able to predict for sur-
face roughness. The obtained results show that the
neural networks techniques are more accurate than
the multiple regression techniques for this study.

Keywords: AISI 316L stainless steel, Analysis of
variance and regression, Artificial neural network,
Dry high-speed turning, Surface roughness.

Resumen

Los métodos de regresién multiple y redes neuronales
artificiales son técnicas usadas en muchas aplicaciones
de la industria. En este trabajo se utilizaron dos
métodos de prediccion: regresion multiple y redes
neuronales artificiales (perceptrén multicapa) con
el objetivo de predecir la rugosidad superficial en
el torneado en seco del acero AISI 3161. En su im-
plementacion fueron considerados varios parametros
de corte como la velocidad, el avance y el tiempo
de mecanizado. Las ecuaciones obtenidas por ambos
métodos fueron comparadas desarrollando un diseno
factorial completo para aumentar la fiabilidad de
los valores registrados de rugosidad superficial. En
el andlisis se puede comprobar mediante los valo-
res de coeficientes de determinacion que los modelos
propuestos son capaces de predecir la rugosidad su-
perficial. Los modelos obtenidos demuestran que la
técnica de redes neuronales artificiales tiene mejor
precisién que la regresién multiple para este estudio.

Palabras clave: acero inoxidable AISI 316L, andlisis
de varianza y regresion, redes neuronales artificiales,
rugosidad superficial, torneado de alta velocidad.
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1. Introduction

Stainless steel is one of the most used metallic materi-
als in the industrial sector, due to its favorable combi-
nation of mechanical properties, corrosion resistance
and cost. This material has been widely used in the
aerospace and military fields, where there is a grow-
ing demand and increasing surface quality require-
ments [1].

The characteristics of the machined surface di-
rectly affect fatigue resistance, corrosion resistance
and the tribological properties of the machined com-
ponents. Obtaining a high-quality surface increases
the life of the product’s fatigue capacity. Consequently,
control of the machined surface is essential to ensure
a correct cutting process. The most important aspect
in manufacturing processes is the measurement and
characterization of surface properties. In the turning
pro-cess, surface roughness is a parameter that has a
great influence on the behavior and functionality of
me-chanical components and production costs [2].

Surface roughness is affected by several factors,
such as: advance, the properties of the working mate-
rial, cutting speed, depth, tip radius, the conditions of
the machine, cutting fluids, the materials of the cutting
tools, and the angles of the cutting tool, among others.
Within them, it is easy to adjust cutting parameters
in order to achieve the expected performance [3].

Austenitic stainless steels are considered difficult
to machine, a characteristic related to their low ther-
mal conductivity, high coefficient of thermal expan-
sion, high ductility and high hardening by deformation.
Fin-ishing operations carried out on these steels are
com-monly executed with coated carbide inserts. The
range of recommended speeds for the turning of these
steels are very conservative (200-350 m/min) [4].

The use of low cutting speeds leads to a low effi-
ciency in production and consequently high produc-
tion costs [5]. As this range is unproductive in terms
of current technological conditions, it is necessary to
de-termine the behavior of surface roughness during
the high-speed machining process (HSM).

Surface roughness generated in the machining pro-
cesses has been studied since [6] by Sata and in [7]
by Dickinson. The effect of the tool advancement, the
tip radius and the angle of the edge on the surface
roughness generated in the turning was described by
Groover and named «ideal roughnessy, enunciated as
the minimum roughness that is generated in a turned
piece [8].

Surface roughness is one of the quality parameters
most studied by researchers who analyze the machina-
bility of austenitic steels. For example, Korkut et al.
conducted a study of surface roughness and flank wear
to determine the optimum cutting speed with the use
of coated carbide inserts. The highest values of surface
roughness during turning were achieved at low speeds

(<180m/min) attributed to the presence of cut-ting
edge growth [9]. A similar result was achieved by Ciftci
during his experimental study to analyze the influence
of cutting speed (between 120 m/min and 210 m/min)
on surface roughness and cutting forces [9].

Four years later, Galanis and Manolakos developed
an empirical mathematical model to predict surface
roughness with the application of a surface response
methodology. This investigation was developed during
the machining of femoral heads with a tool coated with
(TiN/Al,O3/TiC) [10].

In 2012, Caydas and Ekici implemented an artifi-
cial neural network to predict surface roughness. The
validation of this model was developed through an ex-
perimental study that considered the cutting parame-
ters involved in the dry turning of stainless steel AISI
304 [11].

That same year, Ahilan and others conducted an
investigation with the purpose of developing a model
based on artificial neural networks to predict cutting
conditions on CNC lathes. They used the design of ex-
periments (Taguchi method) to train and validate the
proposed neural model [12]. In this case, the maxi-mum
cutting speed used was 150 m/min.

Selvaraj and others developed a research to opti-
mize cutting parameters in order to minimize surface
roughness, cutting force and tool wear. The experi-
ments are analyzed using the Taguchi method, the
turning operation was performed dry and at a maxi-
mum cutting speed of 120 m/min [13].

Figure 1 shows a summary of the cutting speeds
used in the main studies developed during the turning
of austenitic steels. These investigations include not
only the study of surface roughness, but also of wear of
cutting tools, surface integrity, cutting forces, cut-ting
power and chip formation.

The literature reveals (Figure 1) that there are few
studies related to the dry turning of austenitic stainless
steels at cutting speeds higher than 400 m/min. Only
four authors exceeded this cutting speed.

Lin evaluates the wear behavior of the tool (flank
wear) [14], Fernandez-Abia and collaborators did not
carry out dry machining [15], Maranh&o and Darvim
studied the influence of the friction coefficient of
the tool-chip interface [16] and finally, Galanis and
Manolakos studied the effect of cutting conditions on
surface roughness during the machining of AISI 316L
stainless steel femoral heads. The cutting length for
this study was 28 mm [17].

The objective of this research is to compare two
methods in order to predict surface roughness in AISI
316L stainless steel with speeds of 400 m/min and
450 m/min, one based on multiple regression and an-
other in artificial neural networks of the multilayer
percep-tron type.

For this purpose, it was necessary to implement a
complete factorial design to investigate the effect of
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cutting conditions (speed, advance, time) on surface
roughness. Multiple regression models are validated
by basic assumptions.

A multilayer perceptron architecture with a back-
propagation algorithm is used to develop the neural

network and the criterion for updating the weights is a
downward gradient. The effectiveness of both models
is determined by comparing the coefficients of deter-
mination and the absolute average error.
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Figure 1. Main investigations in the turning of austenitic stainless steels

2. Materials and methods

2.1. Surface roughness models

In turning, there are many factors that affect surface
roughness such as the cutting tool, the work material
and the cutting parameters. The factors related to the
tools include materials, tip radius, the angle of attack,
the geometry of the cutting edge, the vibration of the
tool, etc., while the variables related to the material
of the piece of work include hardness, physical and
me-chanical properties, among others. On the other
hand, influential cutting conditions include cutting
speed, advance and depth [18].

The appropriate selection of cutting parameters
and the geometry of the tool to achieve the required
surface quality is complex and difficult [19]. There-
fore, it is clear that the selection and obtaining of a
model that describes this process is essential for the
machining of steels [20].

Surface roughness (Ra) is generally defined based
on the ISO 4287 standard as the arithmetic mean of the
deviation of the profile of the roughness from the cen-

terline throughout the measurement. This definition
is given in equation (1).

L
7 W

Where: L is the measurement length; y it is the dis-
tance between two points of the profile. The relation-
ship between surface roughness and machining varia-
bles can be defined as (equation 2):

(1)

Ry=C-V". fm.dl.rl.¢ (2)
Where, Ra is surface roughness measured in pm,;
V, f, d, r are cutting speed (m/min), feed (mm/rev),
depth (mm), radius of the tool tip (mm), respectively.
C, m, n, | are constants and ¢ is the random error [21].
Equation (1) can be seen as equation (3) to facilitate
the representation of constants and parameters. The
arithmetic mean roughness (Ra) and the height of the
maximum peak (Rt) of the turned surfaces can be
de-termined by the following equations (3) and (4):



82

INGENIUS N.° 19, january-june of 2018

2
Ra~ 35 T (3)
2

Where r is the tip radius (mm) and f is the cutting
advance (mm/rev). Equations (3) and (4) show that
surface roughness increases proportionally with the
advance and, in addition, the increase in tip radius
of the cutting tool reduces surface roughness in the
turning.

2.2. Modelacién por regresién miltiple

Multiple regression is a statistical technique that al-
lows to determine the correlation that exists between
independent variables and two or more dependent va-
riables. Multiple regression can be used to analyze
ordinal and categorical data [22]. Generally, a variance
analysis (ANOVA) is carried out first to determine the
important factors involved and then with the use of
regression a quantitative model is obtained that relates
the most important factors with the answer [23].

2.3. Prediction strategy using artificial neural
networks

Artificial neural networks (ANNs) are widely used in
many industry applications. These are very popular
in the modeling of systems due to their high efficiency
in adaptation and learning through pattern recogni-
tion [3].

The network installed in this research is a multi-
layer perceptronic network which is equivalent to mul-
tiple non-linear regression [24]. The multilayer percep-
tronic network is composed of the association of arti-
ficial neurons organized within the network forming
levels or layers.

This case presents an input layer in which the
patterns are introduced into the network (cutting pa-
rameters), a hidden layer with some neurons, and an
output layer with the response variable (surface rough-
ness). The structure of the ANN shown in Figure 2
was used to model and predict the dependent variable.

The determination of the optimal number of neu-
rons of the hidden layer was carried out through a
trial and error process in which different variants were
tested. In any case, the objective was to provide the
network with an adequate number of neurons in the
hid-den layer to guarantee the ability to learn the char-
acteristics of the possible relationships between the
sam-ple’s data.

Hidden layer

‘ Input | ‘ Input layer ‘

Xz
At
Xs

Surface roughness

Cutting Parameters

Figure 2. Structure of the multi-layer perceptronic net-
work

2.4. Experimental tests

Experimental turning was executed in dry conditions,
with the use of a multifunctional Okuma Multus B200-
W type lathe with an engine power of 15 kW and a
rotation of the spindle between 50 rpm and 5000 rpm
(Figure 3).

Figure 3. CNC multifunctional lathe Okuma model Mul-
tus B-200W

AIST 316L stainless steel was the material selected
for the test pieces. This steel is used in the manufac-
ture of products resistant to corrosion and to high
tem-peratures [25]. The chemical composition is C
0.015%, Si 0.58%, Mn 1.50%, Cr 16.95%, Mo 2.05%,
Ni 10.08%, P 0.031%, S 0.029% and N 0.059%.

The specimens of 100 mm in diameter and 200
mm in length were turned with sandvik, GC1115 and
GC2015 coated inserts. The coatings of (TiCN-A5O3-
TiN) with a thickness of 15 um corresponded to the
G(C2015 insert and, for the GC1115 insert, the coating
was 5 um thick TiN. After the turning operation, sur-
face roughness (Ra) was measured with a CARL ZEISS
rugosimeter model SURFCOM 1500SD2 (Figure 4).

The geometry of the inserts was CCMT 12 04 04-
MF with chipbreaker, the Sandvik tool holder code
C6-SCLCL-45065-12 and an adapter with code C6-
391.01-63 060. The main incidence angle was 7°, the
angle of attack was 0° and the radius of the tip of 0.4
mm.
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Figure 4. CARL ZEISS rugosimeter model SURFCOM
15008D2.

A complete factorial analysis was done to deter-
mine the relationship between the independent varia-
bles (cutoff parameters) and the dependent variable
(surface roughness (Ra)). A total of 64 tests for two
replicas were developed with two levels of cutting
speeds (v), four levels of time (T'), two levels of cut-
ting advances (f) and two levels of tool material. Table
1 shows the variables studied.

Table 1. Factors and levels used in the development of the experiment

Factors Symbols Level 1 Level 2 Level 3 Level 4
Advanced (mm/rev) f 0,08 0,16 - -
Insert material Ins GC1115 GC2015 - -
Speed (m/min) v 400 450 - -
. . 400 m/min 2 3 4 5
Time (min) T 4s0m/min - 06 1,2 2 3

3. Results and discussion

Surface roughness is widely used as a parameter to
indicate the quality of a product and in most cases, an
important technical requirement in mechanical design.

Consequently, achieving the quality of the desired
surface is of great importance for the functional be-
havior of a product [26]. It also has an impact on
me-chanical properties, specifically on fatigue resis-
tance and corrosion resistance [19].

Manufacturing industries are in charge of guaran-
teeing the consumer’s increasing demands for superfi-
cial quality and availability of less expensive products.
Therefore, knowing the effect of these parameters is im-
portant to evaluate the effectiveness and productivi-ty
of the cutting process [27].

This section compares and discusses the results ob-
tained through multiple regression and artificial neural
networks.

3.1. Analysis of multiple regression

The models obtained as a result of the multiple regres-
sion analysis with the velocity of 400 m/min are shown
in equations (5) and (6) for the GC1115 and GC2015
inserts respectively. The models with the speed of 450
m/min are shown in equations (7) and (8) for the
GC1115 and GC2015 inserts respectively.

R, = 0,358933 4 0,0188793 - ¢” - f (5)

R, = 0,27529 4 0,0109446 - T2+ 0,69- f  (6)

R, = —2,75967 + 2,99435 - ¢(T*1%) (7)

R, = 0,219579 4+ 0,0201327 - T3 + 0,45625 - f (8)

The coefficient of determination (R?) represents
the true measure of the correctness of the adjustment
in the regression line determined by the model. For
these cases the R? were at a speed of 400 m/min, 0.92
(GC1115) and 0.80 (GC2015) and for 450 m/min were
0.97 (GC1115) and 0.97 (GC2015).

In all cases, in order to validate the regression re-
sults obtained, compliance with the basic regression
assumptions was verified, such as: homoscedasticity
(White Test), non-autocorrelation of residues (Breusch-
Godfrey Test), normality (Jarque-Bera Test) and no
mean.

Figures 5 and 6 show the comparisons between
the experimentally measured values and the estimated
values of surface roughness by the models correspond-
ing to the speeds of 400 m/min and 450 m/min, re-
spectively. In these Figures we can observe a strong
relationship between the estimated variables and the
response variable.
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3.2. Results of artificial neural networks

The structure of the network applied to model and
predict surface roughness in the turning operation cor-
responds to the multilayer perceptron of the feedfor-
ward Backpropagations type. The experimental data
were used to construct the model of artificial neural
networks.

The training was developed through the Levenberg
Marquardt algorithm. The best results were obtained
with a 3-5-1 structure, three neurons in the input layer,
5 neurons in the hidden layer and one in the output
layer. The neural network software was encoded using
Matlab’s Neural Networks Toolbox. The parameters
of the proposed network structure are shown in Table
2.

The input data were divided by the speeds, there-
fore, only the machining time, the cutting advance and
the type of cutting tool were considered. These data
were randomly distributed in the following way: for
the training 70% were selected (22 data), 15% (5 data)
for the test stage and for the validation the remaining
15% (5 data).

Table 2. Parameters of the artificial neural network im-
plemented in the study.

Number of layers 3
Entrada: 3
Number of neurons in the layers Oculta: 5
Salida: 1
Activation function Tansig-purelin
Number of iterations 10000

The results obtained were analyzed by statistical
methods, the criteria used were the absolute average er-
ror (Emedio, (%)) and the coefficient of determination
(R?).

Equations 9 and 10 are used to calculate these
criteria respectively.

X 100)

1
Emedw - ( N zz:
R2o1_— <Zi(ti - tO)Q)
Zi(t0)2

Where N, is the number of trials; ¢;, experimental
values and tg, estimated values.

Figures 7 and 8 show a comparison between the ex-
perimental values and the estimated values of sur-face
roughness by the model developed by artificial neural
networks.

The results of the neural networks show that the
models proposed in this study are suitable for the
pre-diction of surface roughness.

The values of the coefficients of determination and

of the absolute average errors are within acceptable
ranges (Table 3).

t; —to

9)

i

(10)
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Table 3. Values of coefficients of determination (R?) and
absolute mean errors for each developed neural network.

Neural network

Parameter 400 m/min 450 m/min
Training 0,98134 0,99836
Test 0,99842 0,99026
General 0,98122 0,9973
Eaverage 2,869 6,946
0,8 - ,
—e—Exp. ;’(
0,7 -
Pred-RNA
E 0,6
.”j S5 = J
04 - g
.,\/
0,3 . . : .
2 3 4 5 25 ‘3 ‘4’ 5
f=0,08 mm/rev f=0.16 mm'rev
T (min)
(a)
08
——Exp.
0,7
Pred-RNA
= 06 - e
E_ ’ M = /
= /
2 05
04 ,,/
0,3 T T T T T 1
2 3 4 5 2 3 4 5
f=0.08 mm'rev f=0.16 mm/rev
T (min)
(b)

Figure 7. Values measured and estimated by artificial
neural networks for v = 400 m/min, a) GC1115 insert and
b) GC2015 insert

3.3. General evaluation

A complete factorial experiment design was applied to
determine the effects of independent variables (speed,
advance, time and cutting tools) of the dry turning
process in surface roughness. After each turning test,
surface roughness values were recorded for further anal-
ysis. In this research, models were developed us-ing
artificial neural networks and multiple regression. Ta-
ble 4 shows a comparison of the results according to

the precision of the values obtained by means of mul-
tiple regression and by artificial neural networks. The
results are close to those measured experimentally for
all models. Therefore, the proposed models can be
used to predict surface roughness in the dry turning of
AISI 316L steel. However, as can be seen in the same
table, the models obtained by artificial neural networks
produce better results compared to the models using
multiple regression.

3.5~
——Exp.
28
Pred-RNA
=21
P14 -
0,7 | sl /
. K a4
U T T T T
06 1,2 2 3 06 1,2 2 3
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(a)
1 -
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Pred-RMNA
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E
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3
sl /
Sl
0,2 : : : . ; . . : :
06 12 2 3 06 1,2 2 3
f=0,08 mm/rev f=0.16 mm/rev
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(b)

Figure 8. Values measured and estimated by artificial
neural networks for v = 450 m/min, a) GC1115 insert and
b) GC2015 insert

Table 4. Comparison of proposed methods

Method Equation Eayerage R2
-1 5,153 0,9
Multiple -2 5,552 0,8
Regresion -3 2278 1
-4 8,473 1
A;teljlr‘;f‘l 400 m/min 2,869 1
450 m/min 6,946 1

network
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4. Conclusions

In this research, a study has been carried out to predict
surface roughness in the dry turning of AISI 316L steel.
The influence of variables such as speed, ad-vancement
and machining time were analyzed through a complete
factorial design. The models to predict the surface
roughness were developed from the experimental data.
According to the results obtained in this work, the
following conclusions are presented.

e The developed models were evaluated for their
prediction capabilities with the values measured
experimentally.

e The proposed models can be used to predict sur-
face roughness in the dry turning of AISI 316L
steel.

e The coefficient of minimum determination
reached by the models was 80% and the maxi-
mum of 99%, indicating the proportion of vari-
ability of the data explained by the regression
models, in the case of the absolute average error
the minimum was of 2,869% and the maximum
of 22.78.

e The lowest absolute mean errors were obtained
with the models implemented with artificial neu-
ral networks.

e In future research, models based on neural net-
works and multiple regression could be devel-
oped to allow a study of the economy of the dry
turning process.
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