STUDY OF THE USE OF SOLAR AND BIOGAS ENERGY FOR THE SUPPLY OF A FLEET OF ELECTRIC VEHICLES IN THE CITY OF ILHABELA-BRAZIL

Main Article Content

Abstract

Actualmente, los sistemas híbridos de generación de energía se han mostrado como una excelente oportunidad para la generación de electricidad. En este trabajo se presenta el estudio de uno de estos sistemas considerando dos fuentes de energía disponibles (solar -- biogás) en la isla Ilhabela en el estado de San Pablo -- Brasil, con miras a dotar de energía a vehículos eléctricos. Este estudio se basa primeramente en el cálculo de la demanda de energía de los vehículos eléctricos en esta isla. Luego se determina la capacidad de producción de biogás en Ilhabela. Posteriormente se efectúa un análisis energético de la planta con una microturbina a biogás para conocer la energía producida y la demanda de biogás. Como último paso, se calcula la cantidad de energía necesaria a ser generada con la planta fotovoltaica. Los resultados muestran que, considerando un índice de inserción de mercado del 4 de los vehículos eléctricos, la demanda energética media es de 46 327 kWh/mes. Por otro lado, la capacidad de producción de biogás en la isla es dos veces mayor a la necesaria para generar 16 200 kWh/mes. Finalmente, la planta fotovoltaica producirá 30 127 kWh/mes.
Abstract 608 | PDF (Español (España)) Downloads 376 PDF Downloads 115 HTML (Español (España)) Downloads 83 HTML Downloads 80

References

[1] K. Reiche, A. Covarrubias, and E. Martinot, “Expanding electricity access to remote areas: Off-grid rural electrification in developing countries,” WorldPower2000, pp. 52–60, 2000. [Online]. Available: https://goo.gl/4d6m7k
[2] T. Hirota, “Task 17 pv for transport draft task workplan for 2018-2020,” Waseda University, Tech. Rep., 2017. [Online]. Available: https://goo.gl/jDegU4
[3] Bloomberg New Energy Finance, “Electric vehicle outlook 2017,” Bloomberg Finance L.P, Tech. Rep., 2017. [Online]. Available: https://goo.gl/BNtKZe
[4] A. Poullikkas, “Sustainable options for electric vehicle technologies,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 1277–1287, 2015. doi: https://doi.org/10.1016/j.rser.2014.09.016.
[5] J. J. Roberts, S. Thibaud, and P. O. Prado, “Proyecto de un sistema híbrido de generación con energías renovables para un establecimiento rural aislado,” in XI Latin-American Congress on Electricity Generation and Transmission “Bioenergy for Electricity Generation” and “Ecological Issues in Power Plants”, At São José dos Campos, Brazil, 2015. [Online]. Available: https://goo.gl/omxcph
[6] A. Cassula, P. O. Prado, J. L. Silveira, and J. J. Roberts, Energía: Investigaciones en América del Sur,, 1st ed. Editorial de la Universidad del Sur, 2017, ch. Dimensionamiento de Sistemas Híbridos de Generación de Energía, pp. 109–136. [Online]. Available: https://goo.gl/yBQo3y
[7] T. Wilberforce, Z. El-Hassan, F. Khatib, A. A. Makky, A. Baroutaji, J. G. Carton, and A. G. Olabi, “Developments of electric cars and fuel cell hydrogen electric cars,” International Journal of Hydrogen Energy, vol. 42, no. 40, pp. 25 695–25 734, 2017. doi: https://doi.org/10.1016/j.ijhydene.2017.07.054.
[8] V. Gass, J. Schmidt, and E. Schmid, “Analysis of alternative policy instruments to promote electric vehicles in austria,” Renewable Energy, vol. 61, pp. 96–101, 2014. doi: https://doi.org/10.1016/j.renene.2012.08.012.
[9] E. Talebizadeh, M. Rashidinejad, and A. Abdollahi, “Evaluation of plug-in electric vehicles impact on cost-based unit commitment,” Journal of Power Sources, vol. 248, pp. 545–552, 2014. doi: https://doi.org/10.1016/j.jpowsour.2013.09.009.
[10] K. Seddig, P. Jochem, and W. Fichtner, “Integrating renewable energy sources by electric vehicle fleets under uncertainty,” Energy, vol. 141, pp. 2145–2153, 2017. doi: https://doi.org/10.1016/j.energy.2017.11.140.
[11] M. Honarmand, A. Zakariazadeh, and S. Jadid, “Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid,” Energy Conversion and Management, vol. 86, pp. 745–755, 2014. doi: https://doi.org/10.1016/j.enconman.2014.06.044.
[12] W. Liu, W. Hu, H. Lund, and Z. Chen, “Electric vehicles and large-scale integration of wind power – the case of inner mongolia in china,” Applied Energy, vol. 104, pp. 445–456, 2013. doi: https://doi.org/10.1016/j.apenergy.2012.11.003.
[13] D. B. Richardson, “Electric vehicles and the electric grid: A review of modeling approaches, impacts, and renewable energy integration,” Renewable and Sustainable Energy Reviews, vol. 19, pp. 247–254, 2013. doi: https://doi.org/10.1016/j.rser.2012.11.042.
[14] L. D. D. Harvey, Energy and the New Reality 2: Carbon-free Energy Supply, Earthscan, Ed., 2010. [Online]. Available: https://goo.gl/RzPzu4
[15] J. E. Campbell, D. B. Lobell, and C. B. Field, “Greater transportation energy and ghg offsets from bioelectricity than ethanol,” Science, vol. 324, no. 5930, pp. 1055–1057, 2009. doi: http://doi.org/10.1126/science.1168885.
[16] A. R. Bhatti, Z. Salam, M. J. B. A. Aziz, K. P. Yee, and R. H. Ashique, “Electric vehicles charging using photovoltaic: Status and technological review,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 34–47, 2016. doi: https://doi.org/10.1016/j.rser.2015.09.091.
[17] F. Mwasilu, J. J. Justo, E.-K. Kim, T. D. Do, and J.-W. Jung, “Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration,” Renewable and Sustainable Energy Reviews, vol. 34, pp. 501–516, 2014. doi: https://doi.org/10.1016/j.rser.2014.03.031.
[18] S. J. Chiang, H. J. Shieh, and M. C. Chen, “Modeling and control of pv charger system with sepic converter,” IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4344–4353, Nov 2009. doi: https://doi.org/10.1109/TIE.2008.2005144.
[19] J. L. Silveira, C. E. Tuna, and W. de Queiroz Lamas, “The need of subsidy for the implementation of photovoltaic solar energy as supporting of decentralized electrical power generation in Brazil,” Renewable and Sustainable Energy Reviews, vol. 20, pp. 133–141, 2013. doi: https://doi.org/10.1016/j.rser.2012.11.054.
[20] M. G. Villalva and J. R. Gazoli, Energía solar fotovoltaica: conceitos e aplicações, ERICA, Ed., 2012. [Online]. Available: https://goo.gl/CJKrDF
[21] M. Benaouadj, A. Aboubou, M. Becherif, M. Y. Ayad, and M. Bahri, “Recharging of batteries/-supercapacitors hybrid source for electric vehicles application using photovoltaic energy in a stand-alone point,” in 2012 First International Conference on Renewable Energies and Vehicular Technology, March 2012. doi: https://doi.org/10.1109/REVET.2012.6195264, pp. 161–166.
[22] J.-H. Song, Y.-S. An, S.-G. Kim, S.-J. Lee, J.-H. Yoon, and Y.-K. Choung, “Power output analysis of transparent thin-film module in building integrated photovoltaic system (bipv),” Energy and Buildings, vol. 40, no. 11, pp. 2067–2075, 2008. doi: https://doi.org/10.1016/j.enbuild.2008.05.013.
[23] N. Altin and T. Yildirimoglu, “Labview/matlab based simulator for grid connected pv system,” in 4th International Conference on Power Engineering, Energy and Electrical Drives, May 2013. doi: https://doi.org/10.1109/PowerEng.2013.6635804, pp. 1316–1321.
[24] E. B. Pereira, F. R. Martins, S. L. de Abreu, and R. Rüther, Atlas Brasileiro de Energia Solar. SWERA, 2017. [Online]. Available: https://goo.gl/8Sr1tG
[25] CCEE. (2015) 3 leilão de fontes alternativas (3 lfa). Camara de Comercialização de Energia Elétrica. [Online]. Available: https://goo.gl/Sy8iWg
[26] MME, Boletim mensal de monitoramento do setor elétrico, Ministério de Minas e Energia, 2017.
[27] R. L. Nascimento, “Energia solar no Brasil: situação e perspectivas,” Camara dos Deputados. Brasil., Tech. Rep., 2017. [Online]. Available: https://goo.gl/gmSddm
[28] ANEEL, Resolução normativa n. 687, Altera a Resolução Normativa n 482, Módulos 1 e 3 dos Procedimentos de Distribuição - PRODIST, Agencia Nacional de Energia Elétrica. Brasil Std., 2017. [Online]. Available: https://goo.gl/T6PiFn
[29] ——, Nota Técnica n. 0056/2017-SRD/ANEEL, Atualização das projeções de consumidores residenciais e comerciais com microgeração solar fotovoltaicos no horizonte 2017-2024, Agencia Nacional de Energia Elétrica. Brasil Std., 2017. [Online]. Available: https://goo.gl/uq4L3i
[30] IBGE, Conheça cidades e estados do brasil, Instituto Brasileiro de Geografia e Estatística, 2017. [Online]. Available: https://goo.gl/nCPqGJ
[31] Itapemar Hotel. (2017) Mapa de bolso - ilhabela. [Online]. Available: https://goo.gl/zW4mFS
[32] P. M. de Ilhabela, Plano Municipal Integrado de Saneamiento Básico, Governo do Estado de São Paulo, 2015. [Online]. Available: https://goo.gl/4WVGst
[33] W. Q. Lamas, “Análise termoeconômica de uma mini-estação de tratamento de esgoto com auto-suficiência energética,” Ph.D. dissertation, Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2007. [Online]. Available: https://goo.gl/8jqqJu
[34] CRESESB. (2018) Potencial solar - sundata v 3.0. Centro de referência para energia solar e eólica Sérgio Brito. [Online]. Available: https://goo.gl/Ae2cUG
[35] G. M. Fetene, S. Kaplan, S. L. Mabit, A. F. Jensen, and C. G. Prato, “Harnessing big data for estimating the energy consumption and driving range of electric vehicles,” Transportation Research Part D: Transport and Environment, vol. 54, pp. 1–11, 2017. doi: https://doi.org/10.1016/j.trd.2017.04.013.
[36] R. Baran and L. F. L. Legey, “The introduction of electric vehicles in brazil: Impacts on oil and electricity consumption,” Technological Forecasting and Social Change, vol. 80, no. 5, pp. 907–917, 2013. doi: https://doi.org/10.1016/j.techfore.2012.10.024.
[37] J. B. Soares, “Matriz elétrica brasileira e matriz elétrica brasileira e as rei’s,” in Empresa de Pesquisa Energética, Ministério de Minas e Energia, 2016. [Online]. Available: https://goo.gl/q5GnBS
[38] E. F. Choma and C. M. L. Ugaya, “Environmental impact assessment of increasing electric vehicles in the brazilian fleet,” Journal of Cleaner Production, vol. 152, pp. 497–507, 2017. doi: https://doi.org/10.1016/j.jclepro.2015.07.091.
[39] V. Pecora, “Implantação de uma unidade demonstrativa de geração de energia elétrica a partir do biogás de tratamento do esgoto residencial da usp,” Master’s thesis, Universide de São Paulo (Instituto de Eletrotécnica e Energia). Brasil, 2006. [Online]. Available: https://goo.gl/n35Ysr
[40] S. T. Coelho, S. M. S. G. Velazquez, O. S. Martins, and F. C. de Abreu, “Sewage biogas convertion into eletricity,” in Anais do 6. Encontro de Energia no Meio Rural, 2006, Campinas (SP, Brasil), 2006. [Online]. Available: https://goo.gl/X6LWYt
[41] J. C. Galarza, O. Llerena, and J. L. Silveira, “Thermodynamic and economic analysis of cogeneration system applied in biodiesel production,” in XI Latin-American congress electricity generation and transmission - CLAGTEE 2015, 2015. [Online]. Available: https://goo.gl/9KuUc6
[42] A. T. França Junior, “Análise do aproveitamento energético do biogás producido numa estação de tratamento de esgoto. 2008,” Master’s thesis, Universidade Estadual Paulista (UNESP). Brasil, 2008. [Online]. Available: https://goo.gl/yAA3zq
[43] D. F. da Costa, “Geração de energia elétrica a partir do biogás do tratamento de esgoto. 2006,” Master’s thesis, Escola Politécnica, Universidade de São Paulo. Brasil, 2006. [Online]. Available: https://goo.gl/U8u5qM
[44] O. Llerena, “Análisis energético, exergético y económico de un sistema de cogeneración: Caso para una planta azucarera de San Pablo,” INGENIUS, no. 19, pp. 29–39, 2018. doi: https://doi.org/10.17163/ings.n19.2018.03. 2018.
[45] GTW. (2012) 2012 gtw handbook. Gas Turbine World. PequotPublishing Inc. [Online]. Available: https://goo.gl/qmjxen
[46] Y. Cengel and M. Boles, Termodinámica, M. G. Hill., Ed., 2015. [Online]. Available: https://goo.gl/XCTYQU
[47] H. M. de Carvalho, “Desenvolvimento matemático para avaliação de desempenho de turbinas a gás de um eixo,” Master’s thesis, Universidade Federal
de Itajubá. Brasil, 2006. [Online]. Available: https://goo.gl/cSeUzQ
[48] H. I. H. Saravanamuttoo, G. F. Crichton Rogers, and H. Cohen, Gas Turbine Theory, P. Hall, Ed., 2001. [Online]. Available: https://goo.gl/smXkp6
[49] M. M. Mahmoud and I. H. Ibrik, “Technoeconomic feasibility of energy supply of remote villages in palestine by pv-systems, diesel generators and electric grid,” Renewable and Sustainable Energy Reviews, vol. 10, no. 2, pp. 128–138, 2006. doi: https://doi.org/10.1016/j.rser.2004.09.001.
[50] D. I. Marinoski, I. T. Salamoni, and R. Ruther, “Pré-dimensionamento de sistema solar fotovoltaico: estudo de caso do edifício sede do crea-sc,” in I Conferêcia Latino-Americana De Construção Sustentável X Encontro Nacional de Tecnologia do Ambiente Construído. São Paulo. ANTAC, 2004. [Online]. Available: https://goo.gl/QxnFCa
[51] Greener. (2017) Em 12 meses, preço dos sistemas fotovoltaicos cai 24%. Greener. Pesquisa, Estrategia, Inovação. [Online]. Available: https://goo.gl/iLbso8