Módulos elásticos equivalentes para predicción de deformaciones en articulaciones

Main Article Content

Franco Marinelli http://orcid.org/0000-0001-5919-9614
Brenda Anahí Weiss http://orcid.org/0000-0002-0514-1756
Marcelo E. Berli http://orcid.org/0000-0001-9404-6787
José Di Paolo http://orcid.org/0000-0002-6964-1864

Abstract

En el estudio de la mecánica de contacto de las articulaciones humanas, la deformación de las superficies en contacto es fundamental porque posibilita un canal por el que fluye el lubricante reduciendo el desgaste. Para determinar la validez de las predicciones de los desplazamientos de estas superficies a partir de distintos métodos, estos se aplican al estudio del contacto seco y estático de articulaciones de rodilla y de cadera, sanas y protésicas. Aplicando una carga hertziana, se evaluaron tres módulos elásticos equivalentes en un modelo simplificado de columna: el correspondiente a un sólido de pequeño espesor, el correspondiente a un sólido semiinfinito o de Winkler y el correspondiente a un sólido semiinfinito corregido. Los resultados se contrastaron con la solución obtenida resolviendo numéricamente las ecuaciones de elasticidad mediante el método de elementos finitos (MEF). Los resultados para el módulo de Young correspondiente a un material de pequeño espesor, son los que mejor se aproximan a los obtenidos por el MEF. Se demuestra también, que los módulos de Young derivados de la aproximación de sólido semiinfinito son inapropiados. Asimismo, con este trabajo se ha entrenado un becario en las artes de la Mecánica Computacional.
Abstract 365 | PDF (Español (España)) Downloads 284 PDF Downloads 81 HTML (Español (España)) Downloads 61 HTML Downloads 59

References

[1] K. J. Bozic and M. D. Ries, “Wear and osteolysis in total hip arthroplasty,” Seminars in Arthroplasty, vol. 16, no. 2, pp. 142–152, 2005. doi: https://doi.org/10.1053/j.sart.2005.05.003.
[2] R. Pivec, A. J. Johnson, S. C. Mears, and M. A. Mont, “Hip arthroplasty,” The Lancet, vol. 380, no. 9855, pp. 1768–1777, 2012. doi: https://doi.org/10.1016/S0140-6736(12)60607-2.
[3] S. Kurtz, K. Ong, E. Lau, F. Mowat, and M. Halpern, “Projections of primary and revision hip and knee arthroplasty in the united states from 2005 to 2030,” The Journal of bone and joint surgery, vol. 89, pp. 780–785, 04 2007. [Online]. Available: https://goo.gl/1qXADn
[4] Y. Su, P. Yang, Z. Fu, Z. Jin, and C.Wang, “Timedependent elastohydrodynamic lubrication analysis of total knee replacement under walking conditions,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 14, no. 6, pp. 539–548, 2011. doi: https://doi.org/10.1080/10255842.2010.485569.
[5] M. Mongkolwongrojn, K. Wongseedakaew, and F. E. Kennedy, “Transient elastohydrodynamic lubrication in artificial knee joint with nonnewtonian fluids,” Tribology International, vol. 43, no. 5, pp. 1017–1026, 2010, special Issue on Second International Conference on Advanced Tribology (iCAT2008). doi: https://doi.org/10.1016/j.triboint.2009.12.041.
[6] J. Di Paolo, D. M. Campana, S. Ubal, and M. E. Berli, “Flujos de lubricación en canales elásticos. una experiencia didáctica en clases de mecánica del continuo para bioingeniería,” in VI Congreso Argentino de Enseñanza en Ingeniería (VI CAEDI), 2008. [Online]. Available: https://goo.gl/LLLpNC
[7] M. Yousfi, “Etude biomécanique de l’articulation du genou humain. caractérisation mécanique et modélisation de l’ecoulement du fluide synovial en ecrasement lors d’un cycle de marche,” Master’s thesis, Université du 20 Août 1955 Skikda, 2014. [Online]. Available: https://goo.gl/GQJmsr
[8] T. J. R. Hugues, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, C. Corporation, Ed., 2012. [Online]. Available: https://goo.gl/ktCM6S
[9] K. V. Nemade and V. K. Tripathi, “A mathematical model to calculate contact stresses in artificial human hip joint,” International Journal of Engineering Research and Development, vol. 6, no. 12, pp. 119–123, 2013. [Online]. Available: https://goo.gl/FyQQpX
[10] F. Li, H. Chen, and K. Mao, “Computational simulation analysis for torus radius of edge contact in hip prostheses,” Acta of bioengineering and biomechanics, vol. 17, no. 3, pp. 67–73, 2015. [Online]. Available: https://goo.gl/8AJ7nz
[11] Q. Meng, F. Liu, J. Fisher, and Z. Jin, “Contact mechanics and lubrication analyses of ceramicon-metal total hip replacements,” Tribology International, vol. 63, pp. 51–60, 2013, the International Conference on BioTribology 2011. doi: https://doi.org/10.1016/j.triboint.2012.02.012.
[12] J. Armas Sánchez, “Análisis de la fractura por contacto mecánico y su solución por análisis numérico,” Master’s thesis, Instituto Politécnico Nacional. México, 2015. [Online]. Available: https://goo.gl/LnEdPf
[13] J. Di Paolo and M. E. Berli, “Numerical analysis of the effects of material parameters on the lubrication mechanism for knee prosthesis,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 9, no. 2, pp. 79–89, 2006. doi: https://doi.org/10.1080/10255840500523139.
[14] M. E. Berli, D. M. Campana, S. Ubal, and J. Di Paolo, “Lubrication model of a knee prosthesis, with non newtonian fluid and porous rough material,” Latin American applied research, vol. 39, no. 2, pp. 105–111, 2009. [Online]. Available: https://goo.gl/aKL9Ky
[15] B. A. Weiss, M. E. Berli, S. Ubal, and J. Di Paolo, “umerical solution of a 2d lubrication model with sommerfeld boundary conditions for hip prostheses,” in VI Latin American Congress on Biomedical Engineering CLAIB, Paraná, Argentina 29, 30 & 31 October, vol. 49, 2014. doi: https://doi.org/10.1007/978-3-319-13117-7_222.
[16] D. Dowson and G. R. Higginson, Elasto-Hydrodinamic Lubrication. Pergamon Press, 1977. [Online]. Available: https://goo.gl/NV522s
[17] H. P. Evans and W. Snidle, “The elastohydrodynamic lubrication of point contacts at heavy loads,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 382, no. 1782, pp. 183–199, 1982. doi: http://doi.org/10.1098/rspa.1982.0096.
[18] MBA. (2017) More power in your hands. MBA Surgical Empowerment. [Online]. Available: https://goo.gl/aPngur
[19] F. Mattei, Land Di Puccio, B. Piccigallo, and E. Ciulli, “Lubrication and wear modelling of artificial hip joints: A review,” Tribology International, vol. 44, no. 5, pp. 532–549, 2011. doi: https://doi.org/10.1016/j.triboint.2010.06.010.
[20] I. Kutzner, B. Heinlein, F. Graichen, A. Bender, A. Rohlmann, A. Halder, A. Beier, and G. Bergmann, “Loading of the knee joint during activities of daily living measured in vivo in five subjects,” Journal of Biomechanics, vol. 43, no. 11, pp. 2164–2173, 2010. doi: https://doi.org/10.1016/j.jbiomech.2010.03.046.
[21] A. Sharma, “A method to calculate the femoropolyethylene contact pressures in total knee arthroplasty in vivo,” Master’s thesis, University of Tennessee, United States, 2005. [Online]. Available: https://goo.gl/QucK2c
[22] J. S. Jurvelin, M. D. Buschmann, and E. B. Hunziker, “Mechanical anisotropy of the human knee articular cartilage in compression,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 217, no. 3, pp. 215–219, 2003. doi: https://doi.org/10.1243/095441103765212712.
[23] D. E. T. Shepherd and B. B. Seedhom, “Thickness of human articular cartilage in joints of the lower limb,” Annals of the Rheumatic Diseases, vol. 58, no. 1, pp. 27–34, 1999. doi: http://dx.doi.org/10.1136/ard.58.1.27.
[24] H. Oonishi, H. Iwaki, N. Kin, S. Kushitani, N. Murata, S. Wakitani, and K. Imoto, “The effects of polyethylene cup thickness on wear of total hip prostheses,” Journal of Materials Science: Materials in Medicine, vol. 9, no. 8, pp. 475–478, 1998. doi: https://doi.org/10.1023/A:1008823518381.
[25] G. Bergmann, G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, and G. N. Duda, “Hip contact forces and gait patterns from routine activities,” Journal of Biomechanics, vol. 34, no. 7, pp. 859–871, 2001. doi: https://doi.org/10.1016/S0021-9290(01)00040-9.