Métodos multicriterio aplicados en la selección de un material para discos de freno

Main Article Content

Javier Martínez Gómez http://orcid.org/0000-0001-8807-7595
Mario Chérrez Troya, Magister https://orcid.org/0000-0001-7628-9793
Edilberto Antonio Llanes Cedeño, Ph. D. https://orcid.org/0000-0001-6739-7661
Diana Peralta Zurita, Magister https://orcid.org/0000-0002-9523-0743

Abstract

The selection of material for an automotive com-ponent is a complex process, because it involves an exploration of the main criteria according to the properties required by the component to be designed. The use of multi-criteria methods (MCDM) allows the development of a fast and efficient selection methodology, based on the analysis of the properties and the optimization indexes of the criteria to assign importance to each alternative in the selection of the best option for the manufacture of a brake disc. This study uses five candidate materials for the desired application. The MCDM methods used are multidisc-ciplinary optimization and compromise solution (VIKOR), elimination and options that reflect reality (ELECTRE I), proportional complex evaluation (COPRAS), additive ratio evaluation (ARAS), multipurpose optimization based on radius analysis (MOORA) and the ENTROPIA method is used for weighting the criteria. After the analysis of the proposed MCDM methods, the ranking of all the MCDM methods, with the observation that the COPRAS and ARAS method have the same values. The material with the best results in the COPRAS, ELECTRE I, and ARAS methods is ASTM A536, due to its low density, high elastic limit and good compressive strength.
Abstract 657 | PDF (Español (España)) Downloads 442 PDF Downloads 106 HTML (Español (España)) Downloads 85 HTML Downloads 91

References

[1] SENAE. Página principal. Servicio nacional de aduana del Ecuador. [Online]. Available: https://goo.gl/X4Jk9k
[2] H. Sakamoto and K. Hirakawa, “Fracture analysis and material improvement of brake discs,” JSME International Journal Series A Solid Mechanics and Material Engineering, vol. 48, no. 4, pp. 458–464, 2005. doi: https://doi.org/10.1299/jsmea.48.458.
[3] P. Hwang and X. Wu, “Investigation of temperature and thermal stress in ventilated disc brake based on 3d thermo-mechanical coupling model,” Journal of Mechanical Science and Technology, vol. 24, no. 1, pp. 81–84, Jan 2010. doi: https://doi.org/10.1007/s12206-009-1116-7.
[4] V. Thilak, R. Krishnaraj, M. Sakthivel, K. Kanthavel, M. D. Marudachalam, and R. P. G, “Transient thermal and structural analysis of the rotor disc of disc brake,” International Journal of Scientific & Engineering Research, vol. 2, no. 8, pp. 1–4, 2011. [Online]. Available: https://goo.gl/1X9m8t
[5] F. Bagnoli, F. Dolce, and M. Bernabei, “Thermal fatigue cracks of fire fighting vehicles gray iron brake discs,” Engineering Failure Analysis, vol. 16, no. 1, pp. 152–163, 2009. doi: https://doi.org/10.1016/j.engfailanal.2008.01.009.
[6] B. A. Ali, S. Sapuan, E. Zainudin, and M. Othman, “Implementation of the expert decision system for environmental assessment in composite materials selection for automotive components,” Journal of Cleaner Production, vol. 107, pp. 557–567, 2015. doi: https://doi.org/10.1016/j.jclepro.2015.05.084.
[7] P. Chatterjee and S. Chakraborty, “Material selection using preferential ranking methods,” Materials & Design, vol. 35, pp. 384–393, 2012. doi: https://doi.org/10.1016/j.matdes.2011.09.027.
[8] P. J. Blau, B. C. Jolly, J. Qu, W. H. Peter, and C. A. Blue, “Tribological investigation of titanium-based materials for brakes,” Wear, vol. 263, no. 7, pp. 1202–1211, 2007. doi: https://doi.org/10.1016/j.wear.2006.12.015.
[9] M. Maleque, S. Dyuti, and M. M. Rahman, “Material selection method in design of automotive brake disc,” in Proceedings of the World Congress on Engineering 2010 Vol III, 06 2010. [Online]. Available: https://goo.gl/7q9dpc
[10] A. Bahrami, N. Soltani, M. Pech-Canul, and C. A. Gutiérrez, “Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives,” Critical Reviews in Environmental Science and Technology, vol. 46, no. 2, pp. 143–208, 2016. doi: https://doi.org/10.1080/10643389.2015.1077067.
[11] A. Jahan, F. Mustapha, S. M. Sapuan, M. Y. Ismail, and M. Bahraminasab, “A framework for weighting of criteria in ranking stage of material selection process,” The International Journal of Advanced Manufacturing Technology, vol. 58, no. 1, pp. 411–420, Jan 2012. doi: https://doi.org/10.1007/s00170-011-3366-7.
[12] N. Kundakci and A. Isik., “Integration of macbeth and copras methods to select air compressor for a textile company,” Decision Science Letters, vol. 5, no. 3, pp. 381–394, 2016. doi: http://dx.doi.org/10.5267/j.dsl.2016.2.003.
[13] R. J. Girubha and S. Vinodh, “Application of fuzzy vikor and environmental impact analysis for material selection of an automotive component,” Materials & Design, vol. 37, pp. 478–486, 2012. doi: https://doi.org/10.1016/j.matdes.2012.01.022.
[14] L. Anojkumar, M. Ilangkumaran, and V. Sasirekha, “Comparative analysis of mcdm methods for pipe material selection in sugar industry,” Expert Systems with Applications, vol. 41, no. 6, pp. 2964–2980, 2014. doi: https://doi.org/10.1016/j.eswa.2013.10.028.
[15] E. K. Zavadskas and Z. Turskis, “A new additive ratio assessment (aras) method in multicriteria decision–making,” Ukio Technologinis ir Ekonominis Vystymas, vol. 16, no. 2, pp. 159–172, 2010. doi: http://doi.org/10.3846/tede.2010.10.
[16] B. Mallick, B. Sarkar, and S. Das, “Application of the moora method for multi-criteria inventory classification,” Indian Science Cruiser, vol. 31, no. 6, pp. 15–21, 12 2017. doi: http://doi.org/10.24906/isc/2017/v31/i6/166459.
[17] N. Kharate and S. Chaudhari, “Effect of material properties on disc brake squeal and performance using fem and ema approach.” Materials Today: Proceedings, vol. 5, no. 2, Part 1, pp. 4986–4994, 2018. doi: https://doi.org/10.1016/j.matpr.2017.12.076.