Analysis of the electrolyte of an automotive accumulator for different temperatures in starting condition

Main Article Content

Vicente Rojas http://orcid.org/0000-0001-5658-3055
Johnny Pancha http://orcid.org/0000-0001-7320-2154
Vicente Romero http://orcid.org/0000-0003-2317-7071
Jorge Nejer http://orcid.org/0000-0002-5744-2585

Abstract

An automotive battery of the acid lead type is an element that generates an electromotive force capable of supplying energy to the entire electrical system of the vehicle. In this investigation, the behavior of the specific density of the electrolyte during the start-up condition of a heat engine is analyzed; the operating temperature gradient at which the battery can be exposed is also considered as a variable. According to the results, the electrolyte temperature is inversely proportional to its density in the cells of the accumulator during the start-up condition. It is concluded that external conditions, such as the temperature, can directly affect the density and electrical conditions of an accumulator, and can identify the behavior of these during the operation in a vehicle.
Abstract 729 | PDF (Español (España)) Downloads 3217 PDF Downloads 66 HTML (Español (España)) Downloads 134 HTML Downloads 68

References

[1] J. E. Torres, A. Sierra, D. Y. Peña, I. Uribe, and H. Estupiñán, “Velocidad de corrosión de una aleación base plomo en una solución de ácido sulfúrico a diferentes temperaturas,” Materia (Rio de Janeiro), vol. 19, pp. 182–196, 06 2014. [Online]. Available: https://goo.gl/tZqkW2
[2] A. Zolfaghari and G. Jerkiewicz, “Temperaturedependent research on pt(111) and pt(100) electrodes in aqueous H2SO4,” Journal of Electroanalytical Chemistry, vol. 467, no. 1, pp. 177–185, 1999. [Online]. Available: https://doi.org/10.1016/S0022-0728(99)00084-4
[3] C. A. Cadena and R. F. Farfán, “Sensor de gaseo para baterías de plomo-ácido: estudio preliminar,” Asociación Argentina de Energías Renovables y Ambiente; Avances en Energías Renovables y Medio Ambiente, vol. 14, pp. 175–182, 2010. [Online]. Available: https://goo.gl/m9Ug3G
[4] D. Pavlov, Lead-Acid Batteries: Science and Technology: A Handbook of Lead-Acid Battery Technology and Its Influence on the Product. Elsevier, 2017. [Online]. Available: https://goo.gl/WMEFcn
[5] J. M. Alonso, Técnicas del automóvil equipo eléctrico. Thomson Paraninfo, 2005. [Online]. Available: https://goo.gl/4p4ymo
[6] D. Diemand, Automotive Batteries at low temperatures. US Army Corps of Engineers, 1991. [Online]. Available: https://goo.gl/uWhBMV
[7] D. Pavlov, A. Kirchev, M. Stoycheva, and B. Monahov, “Influence of H2SO4 concentration on the mechanism of the processes and on the electrochemical activity of the Pb/PbO2/PbSO4 electrode,” Journal of Power Sources, vol. 137, no. 2, pp. 288–308, 2004. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2004.06.006
[8] ISO, Road vehicles - Environmental conditions and testing for electrical and electronic equipment - Part 2: Electrical loads (ISO 160750-2), International Organization for Standardization Std. [Online]. Available: https://goo.gl/nSXN3w
[9] Megger, Battery testing guide. Megger, 2017. [Online]. Available: https://goo.gl/5RopkA
[10] E. Rojas, “Análisis de la densidad específica del electrolito de un acumulador de energía automotriz plomo ácido a diferentes temperaturas,” Sectei, vol. 5, no. 1, pp. 80–84, 2018.