Performance of columnar database

Main Article Content

Mario Raul Morales-Morales https://orcid.org/0000-0002-7493-8072
Jhonatan W. Durán-Cazar http://orcid.org/0000-0002-8574-1435
Eduardo J. Tandazo-Gaona http://orcid.org/0000-0002-2209-3952
Santiago Morales Cardoso http://orcid.org/0000-0002-3833-9654

Abstract

Companies’ capacity to efficiently process a great amount of data from a great variety of sources anywhere and anytime is essential for them to succeed. Data analysis becomes a key strategy for most large organizations to get a competitive advantage. Hence, new issues should be considered when massive amounts of date are to be stored, because traditional relational database are not capable to lodge them. Such questions include aspects that range from the capacity to distribute and escalate the physical storage, to the possibility of using schemes or non-usual types of data. The main objective of this research is to evaluate the performance of the columnar databases in data analysis, comparing them with relational databases, to determine their efficiency using measurements in different test scenarios. The present study seeks to provide (scientific evidence) professionals interested in data analysis with a basic instrument for their knowledge, to include comparative tables with quantitative data that can support the conclusions of this research. A methodology of applied type and quantitative-comparative descriptive design is used, as it is the one of the most appropriate to study database efficiency characteristics. In the measurement, the method of averages is used for a number n of records, and it is supported in the Aqua Data Studio tool that guarantees a high reliability, as a specialized software for the administration of databases. Finally, it has been determined that the columnar databases have a better performance in data analysis environments.
Abstract 500 | PDF (Español (España)) Downloads 465 PDF Downloads 102 EPUB (Español (España)) Downloads 50 HTML Downloads 53 HTML (Español (España)) Downloads 88

References

[1] A. B. M. Moniruzzaman and S. A. Hossain, “NoSQL database: New era of databases for big data analytics - classification, characteristics and comparison,” International Journal of Database Theory and Application, vol. 6, no. 4, pp. 1–5, 2013. [Online]. Available: http://bit.ly/2XaKoPK
[2] M. F. Pollo Cattaneo, M. López Nocera, and G. Daián Rottoli, “Rendimiento de tecnologías NoSQL sobre cantidades masivas de datos,” Cuaderno Activa, no. 6, pp. 11–17, 2014. [Online]. Available: http://bit.ly/2Rb8zrO
[3] I. Mihaela-Laura, “Characteristics of in-memory business intelligence,” Informatica Economica, vol. 18, no. 3, pp. 17–25, 2014. [Online]. Available: http://doi.org/10.12948/issn14531305/18.3.2014.02
[4] D. Robles, M. Sánchez, R. Serrano, B. Adárraga, and D. Heredia, “¿Qué características tienen los esquemas NoSQL?” Investigación y desarrollo en TIC, vol. 6, no. 1, pp. 40–44, 2015. [Online]. Available: http://bit.ly/2MJ1wZa
[5]M. Marqués, Bases de datos. Universitat Jaume, 2011. [Online]. Available: http://bit.ly/2RcPtS9
[6] E. Ramez and B. N. Shamkant, Fundamentals of Database Systems. Pearson Education., 2015. [Online]. Available: http://bit.ly/2IG3pAk
[7] G. Hahn and J. Packowski, “A perspective on applications of in-memory analytics in supply chain management,” Decision Support Systems, vol. 76, pp. 45–52, 2015. [Online]. Available: https://doi.org/10.1016/j.dss.2015.01.003
[8] H. Plattner and B. Leukert, The In-Memory Revolution. Springer, 2015. [Online]. Available: http://bit.ly/2F3ezhO
[9] M. R. Morales Morales and S. L. Morales Cardoso, “Inteligencia de negocios basada en bases de datos in-memory,” Revista Publicando, vol. 11, no. 2, pp. 201–217, 2017. [Online]. Available: http://bit.ly/2WB3vmC
[10] R. Babeanu and M. Ciobanu, “In-memory databases and innovations in Business Intelligence,” Database Systems Journal, vol. 6, no. 1, pp. 59–67, July 2015. [Online]. Available: http://bit.ly/2wZLFL7
[11] V. D. Shetty and S. J. Chidimar, “Comparative study of SQL and NoSQL databases to evaluate their suitability for big data application,” International Journal of Computer Science and Information Technology Research, vol. 4, no. 2, pp. 314–318, 2016. [Online]. Available: http://bit.ly/2KlNZor
[12] A. T. Kabakus and R. Kara, “A performance evaluation of in-memory databases,” Journal of King Saud University - Computer and Information Sciences, vol. 29, no. 4, pp. 520–525, 2017. [Online]. Available: https://doi.org/10.1016/j.jksuci.2016.06.007
[13] M. T. González-Aparicio, M. Younas, J. Tuya, and R. Casado, “Testing of transactional services in NoSQL key-value databases,” Future Generation Computer Systems, vol. 80, pp. 384–399, 2018. [Online]. Available: https://doi.org/10.1016/j.future.2017.07.004
[14] A. Nayak, A. Poriya, and D. Poojary, “Type of NoSQL databases and its comparison with relational databases,” International Journal of Applied Information Systems (IJAIS), vol. 5, no. 4, pp. 16–19, 2013. [Online]. Available: http://bit.ly/2X2fIQQ
[15] S. Simon, “Report to brewer’s original presentation of his CAP theorem at the symposium on principles of distributed computing (PODC) 2000,” University of Basel, HS2012, Tech. Rep., 2018. [Online]. Available: http://bit.ly/2XFBo2l
[16] E. Brewer, “Cap twelve years later: How the ‘rules’ have changed,” Computer, vol. 45, no. 2, pp. 23–29, Feb 2012. [Online]. Available: https://doi.org/10.1109/MC.2012.37
[17] M. Indrawan-Santiago, “Database research: Are we at a crossroad? Reflection on NoSQL,” in 2012 15th International Conference on Network-Based Information Systems, Sep. 2012, pp. 45–51. [Online]. Available: https://doi.org/10.1109/NBiS.2012.95
[18] GENBETA, NoSQL: clasificación de las bases de datos según el teorema CAP. GENBETA, 2019. [Online]. Available: http://bit.ly/2WHVvR4
[19] R. D. L. Engle, B. T. Langhals, M. R. Grimaila, and D. D. Hodson, “Evaluation criteria for selecting NoSQL databases in a single-box environment,” International Journal of Database Management Systems (IJDMS), vol. 10, no. 4, pp. 1–12, 2018. [Online]. Available: http://bit.ly/2ZgXEQc
[20] Crowd, Best Relational Databases Software. Crowd. Inc, 2019. [Online]. Available: http://bit.ly/2RbQPge
[21] DB-Engines. (2019) Db-engines ranking of wide column stores. [Online]. Available: http://bit.ly/2KOBYHs
[22] Kaggle, Corporación Favorita Grocery Sales Forecasting, 2019. [Online]. Available: http://bit.ly/2F7QYMS
[23] J. W. Durán Cazar, E. J. Tandazo Gaona, and M. R. Morales Morales, Estudio del rendimiento de una base de datos columnar en el análisis de datos. Tesis de Grado. Universidad Central del Ecuador, 2018. [Online]. Available: http://bit.ly/2KhB0nl