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Abstract Resumen
Companies’ capacity to efficiently process a great
amount of data from a great variety of sources any-
where and anytime is essential for them to suc-
ceed. Data analysis becomes a key strategy for most
large organizations to get a competitive advantage.
Hence, new issues should be considered when massive
amounts of date are to be stored, because traditional
relational database are not capable to lodge them.
Such questions include aspects that range from the
capacity to distribute and escalate the physical stor-
age, to the possibility of using schemes or non-usual
types of data. The main objective of this research is to
evaluate the performance of the columnar databases
in data analysis., comparing them with relational
databases, to determine their efficiency using mea-
surements in different test scenarios. The present
study seeks to provide (scientific evidence) profession-
als interested in data analysis with a basic instrument
for their knowledge, to include comparative tables
with quantitative data that can support the conclu-
sions of this research. A methodology of applied type
and quantitative-comparative descriptive design is
used, as it is the one of the most appropriate to study
database efficiency characteristics. In the measure-
ment, the method of averages is used for a number
n of records, and it is supported in the Aqua Data
Studio tool that guarantees a high reliability, as a spe-
cialized software for the administration of databases.
Finally, it has been determined that the columnar
databases have a better performance in data analysis
environments.

En la actualidad para el éxito de las empresas es deci-
siva la capacidad de procesar de manera eficiente una
considerable cantidad de datos de una amplia gama
de fuentes en cualquier lugar y momento. El análisis
de datos se convierte en una estrategia clave para
la mayoría de las grandes organizaciones para lograr
una ventaja competitiva. Por tanto, surgen nuevas
cuestiones a ser tomadas en cuenta a la hora de alma-
cenar y consultar cantidades masivas de datos que, en
general, las bases de datos relacionales tradicionales
no pueden abarcar. Estas cuestiones incluyen desde la
capacidad de distribuir y escalar el procesamiento o el
almacenamiento físico, hasta la posibilidad de utilizar
esquemas o tipos de datos no usuales. El objetivo
principal de la investigación es evaluar el rendimiento
de las bases de datos columnares en analítica de
datos. Efectuar una comparación con bases de datos
de tipo relacional, para determinar su eficiencia, real-
izando mediciones en distintos escenarios de pruebas.
El presente estudio pretende proporcionar (evidencia
científica) un instrumento que facilite a los profesion-
ales interesados en la analítica de datos una base
para sus conocimientos, al incluir cuadros y tablas
comparativos con datos cuantitativos con los que se
pueda sustentar las conclusiones de esta investigación.
Se usa una metodología aplicada y de diseño descrip-
tivo cuantitativo-comparativo al ser el que mejor se
ajusta al estudio de características de eficiencia de
bases de datos. En la medición se usa el método de
promedios para n número de tomas y se soporta en
la herramienta Aqua Data Studio que garantiza una
alta confiabilidad al ser un programa especializado
para la administración de bases de datos. Finalmente,
se ha logrado determinar que las bases columnares
tienen un mejor rendimiento en ambientes de análisis
de datos.
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1. Introduction

Among the different data models, the relational one
has been dominating from the 80s, with database im-
plementations such as Oracle, MySQL and SQL Mi-
crosoft Servers, also known as Relational Database
Management Systems (RDBMS) [1].

As a consequence of the significant growth of In-
ternet in the last years and the appearance of the big
data phenomenon, new issues should be considered
when storing and accessing massive amounts of data
that, in general, traditional relational databases are
not able to cover. These issues include from the ca-
pacity to distribute and scale the processing or the
physical storage, up to the possibility of employing
non usual schemes or types of data [2].

The capacity of efficiently processing a great
amount of data from a wide variety of sources, at
any place and moment, is decisive for the success of
a company. Data analysis becomes a key strategy for
most organizations, to obtain a competitive advan-
tage. Therefore, during the last decade, the worldwide
focus on the management business has changed pro-
foundly [3].

In a scenario where the data tend to be more dif-
ferent, the rigid structure of relational systems makes
significantly difficult to model them. The performance
is limited by the vertical scaling, which does not allow
the distribution of the system load among multiple ma-
chines, together with the great number of concurrent
read and write requests and the own complexity of the
logic behind the operation of relational databases; all
these factors may lead to a efficiency loss regarding
the growth of the data.

As a consequence, it is difficult to respond with
low latency in the case of applications that simulta-
neously serve a large number of requests. Therefore,
redundant and easy to scale systems are necessary to
provide a service with high scalability and availability,
to manage large volumes of data and guarantee their
availability [4].

Prior to defining how the research will be carried
out, it is necessary to review some key concepts that
will be used in the present work.

SQL Database.- The concept of database systems
is not new in the society, their predecessors were the
file systems. As time has gone by, the database was
developed due to the requirement of storing a large
amount of information.

The relational model was defined in 1970, from
which the first relational databases were originated
organized as tables (constituted by rows and columns)
and with their own query language [5]. These systems
provide necessary characteristics in a transactional
environment, following the ACID model. The main
commercial success of the relational databases was the
SQL (Structured Query Language) language, designed

and installed at IBM Research, because it became its
standard language [6].

Big data.- The digital world is growing very fast,
and becomes more complex in terms of volume (ter-
abyte to petabyte), variety (structured, non-structured
and hybrid), speed (growing high speed) and nature.
This is known as the big data global phenomenon.

This is normally considered as a data collection
that has grown up to a point that it cannot be managed
nor exploited in an effective manner using traditional
data managing tools: for instance, relational database
managing systems (RDBMS) or traditional search en-
gines. To handle this problem, traditional RDBMS
are complemented by a collection of specially designed
alternative database managing systems (DBMS), such
as NoSQL [1].

1.1. Technological Platform

The corporate analytics, and related concepts, that
describe the analysis of commercial data for decision
making, have received wide attention both by the aca-
demic and corporate community. The appearance of
database systems in memory, has been promoted even
more by means of improved data managing procedures
and multicore hardware architectures that recently
have become available [7].

1.1.1. Architecture

In recent years, some of the most important devel-
opments in computing technology are the multicore
CPU and the increase in memory capacity based on
a 64-bit architecture, which easily supports directly
addressable space in terabytes. The multicore archi-
tecture enables the parallel massive processing of the
database operations, and since all relevant data are
permanently stored in the memory, the processing is
carried out at the greatest possible speed.

The read operations are completely independent of
any access to devices of slower disk storage. On the
other hand, the write operations also take place in the
memory, but should also be registered in a non-volatile
storage to guarantee persistence of the data [8].

1.1.2. In-memory technology

Has been promoted by the need of processing large vol-
umes of data in a very fast manner, and fundamentally
by the progress in the processors and the increment
in memory capacity based on the 64-bit architecture.
This has enabled the parallel massive processing of
the database operations, lodging all relevant data in
memory [9].

The performance requirement in the Information
Technology (IT) domain combined with the advan-
tages of in-memory computing, are important factors
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that have influenced the appearence of in-memory
databases (IMDB) [10].

1.2. In-memory database

The IMDB constitute a database management system
designed for a high performance, with the condition
that the existent memory is enough to lodge the nec-
essary data. They possess a technique of columnar
storage, which enables the access to the data at high
speeds and with real-time analytical capabilities. In
comparison with Cloud Computing, the advantage for
the user is immediately understandable, since it comes
from a rapid analysis of big data volumes [3].

1.3. NoSQL databases

The development community desires a flexible database
that easily adapts to the new types of data, and is
not interrupted by changes in the structure of the con-
tent. Unfortunately, the rigid approach defined and
based on the scheme utilized by relational databases,
makes impossible to rapidly incorporate new types of
data. NoSQL provides a data model that better adapts
to these needs, since it does not require any type of
scheme with fixed tables, as opposed to the traditional
model.

In general NoSQL scales horizontally, and prevents
the main joining operations in the data. The NoSQL
database covers a swarm of multiple databases, each
with a different model of data storage [11]. Its popular-
ity has increased due to the need of fast processing in
large volumes of data, taking advantage of its highly
scalable architecture, flexible data structure (free of
schemes), reduced latency and high performance [12].
They can be divided in four categories according to
different optimizations:

1.3.1. Key-value database

A key-value storage consists of a set of pairs where one
part represents the key, and the other the values, such
as text chains or lists, and more complex sets. The
data queries are made using keys, not values [13]

1.3.2. Documentary or document-based
databases

They are designed to store data from documents that
use different formats such as JSON; MongoDB and
CouchDB can be mentioned among these databases
[14].

1.3.3. Graphic or graph-based databases

These databases store the information as nodes of
a graph, and the relations as the edges. They are
extensively utilized in recommendation systems and

content management, among others. Among these,
Neo4J, GraphBase and Infinite Graph are employed
most frequently [14].

1.4. Column oriented databases

In the columnar format, all the values of an attribute
of the table are stored as a vector using multiple mem-
ory blocks, and all the vectors of attributes of a table
are stored sequentially. Organizing the values as a
vector of attributes enables an easier understanding
of the data, and also a high scanning and filtering
speed. This results in significant sequential processing,
where the columnar format has an enormous advan-
tage compared with the traditional row-oriented disk
database. In conjunction with the option of parallel
processing, a very high speed can be reached for fil-
tering or any type of aggregation (which constitutes
some of main loads in analytical processing). In fact,
the speed is so high, that the idea of pre-aggregation
of the transactional data, which was the foundation of
information systems in previous decades, can be set
aside. Besides, additional indices for faster access to
the data are not required [8]. A scheme of row and col-
umn operations can be observed in Figure 1. Some of
the most remarkable functional characteristics include:
high compression, implementation, direct operation on
compressed data, iteration per block and efficiency of
Join operators, among others.

Figura 1. Row and column operations on a data design
with rows and columns [8].

1.5. Brewer’s Theorem

Since the size of the data grew significantly, it was
necessary to find more scalable solutions tan the
ACID (Atomicity, Consistency, Isolation and Dura-
bility) databases existent so far. As a result, new
principles were developed, summarized in the BASE
(Basic Availability, Soft-state, Eventual Consistency)
paradigm [15].

The ACID properties are centered in the consis-
tency, and are a traditional approach of the databases.
Brewer and his team created BASE at the end of the
1990s, to capture the emergent design approaches for
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high availability. Modern systems, including the Cloud,
use a combination of both approaches, traditional and
emergent [16].

The objective of Brewer’s theorem was to justify
the need to explore a broader design space; hence
its formulation. The designers and researchers have
utilized Brewer’s theorem, as a reason to explore a
broad variety on novel distributed systems. It has also
been applied by the NoSQL movement, as an argu-
ment against traditional databases. In a sense, in the
NoSQL movement it is about creating options that
first focus in availability and then in consistency; the
databases that adhere to the ACID properties do the
opposite [16].

According to this theorem, it is impossible to si-
multaneously guarantee the three characteristics when
working with distributed systems. Only two of the
three features are possible, it is necessary to resign
or even partially sacrifice one feature to obtain the
others [17].

Figura 2. Brewer’s theorem [18].

• Consistency (C) is equivalent to have a unique
updated copy of the data.

• High availability (A) of these data (for updated).

• Tolerance to partitions of the network (P).

A popular way to characterize NoSQL has been
to examine its approach to meet Brewer’s theorem
of coherence, availability and tolerance to partitions
(CAP). Most of the NoSQL systems has been designed
to sacrifice consistency in exchange of a high availabil-
ity in a partitioned environment [19]. Figure 2 presents
a view of the theorem, in relation to some example
databases.

The option of resigning to the tolerance to parti-
tion is not feasible in real environments, since there
are always partitions in the network. Therefore, in can

be deducted that the decision is between availability
and consistency, which can be represented as ACID
(consistency) and BASE (availability). Nevertheless,
Brewer acknowledged that the decision is not binary.
All the intermediate spectrum is useful; in general,
mixing different levels of availability and consistency
yields a better result [15]. The current objective of the
theorem should be maximizing combinations of consis-
tency and availability that make sense for a specific
application [16].

2. Materials and methods

This work conducts an applied research, with the objec-
tive that the final results are utilized in solving corpo-
rate problems. The design is descriptive quantitative-
comparative, since it aims at specifying what types of
databases have a better performance, by measuring
and studying their characteristics. The instruments
used in the study include standardized tests to compare
two groups of databases: columnar and relational.

The procedure that will be utilized comprises the
following steps: i) determine the sample, in which
the database engines under study are chosen, through
a non-probabilistic sampling by criterion, ii) selec-
tion/creation of the data set, iii) design of the test
scenario, to establish how tests are carried out, which
queries will be executed, the number of measurements
that will be conducted, among others; the hardware
and software infrastructure that will be used is also
specified, iv) data loading, where all the databases
determined in the sample are loaded, v) measurement,
which are carried out using the method of averages and
with a specialized tool; similarly, results are registered
in all defined scenarios, vi) analysis of results, where
the results are interpreted by means of graphs and
tables.

2.1. Determining the sample

Before choosing the sample, it was established that
the population is constituted by all columnar and re-
lational databases existing up to the present research
work. A non-probabilistic sampling by criterion was
used for the selection, which is the best type of non-
probabilistic sampling. The inclusion and exclusion
criteria for delimiting the population are:

• Open source databases (without license).

• Experience of the researchers.

The SQL databases evaluated in this paper are
PostgreSQL and MySQL. In comparison with similar
databases, they are included in the quadrant among
the best open source relational databases [20].

Under the same criteria, the NoSQL databases eval-
uated are: MongoDB, Cassandra, MonetDB. These
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alternatives were chosen for being open source and of
massive utilization; as can be observed in the Ranking
of columnar databases [21], they are pioneers among
their peers due to characteristics such as scalability,
fault tolerance and columnar storage in conjunction
with memory storage.

Another factor that was taken into account is that
they can interpret the SQL syntax, which reduces
the impact of switching to a NoSQL environment. Al-
though it is not a columnar database, MongoDB is
a type of NoSQL database specifically documentary.
It was chosen to compare columnar databases, not
only with SQL databases, but also with other types of
NoSQL databases, documentary in this case. Addition-
ally, MongoDB also employs in-memory technology.

Therefore, the final sample will contain the
databases in Table 1, which also shows the family
of databases that it belongs to, and the version that
will be used in this research.

Tabla 1. Details of databases

Name Type Versionde datos
MySQL Relacional – SQL 8.1.0

PostgreSQL Relacional – SQL 9.6.2
Cassandra Columnar – NoSQL 3.1.0
MonetDB Columnar – NoSQL 11.29.3
MongoDB Documental – NoSQL 3.6.5

2.2. Selection / creation of the data set

An existing set of databases obtained from a public
source [22], was chosen to evaluate and compare the
performance of the databases. This corresponds to the
sales of a large commercial corporation, considering the
invoices in the period 2015-2016. The file has a total
number of 125,000,000 (125 million) records. The data
is stored in CSV files for an easy and uniform access.
Table 2 includes a description of the fields contained
in the file.

Tabla 2. Description of the fields

Field Type Description
Id INT Unique identifier

Date DATE Product registration date
Store_nbr INT Store identifier
Item_nbr INT Product identifier

Number of units sold, it is an
Unit_sales DECIMAL integer number, a negative

value represents a return

Onpromotion BOOLEAN
Indicates if the item was on a promotion

for a specific date and store

2.3. Design of the test scenario

The tests with incremental loading of the data will be
executed first, i.e., the main data file that contains 125
million records will be divided in the following way:
one million, ten million, twenty-five million and fifty
million records. The resulting four files will constitute
for different scenarios; these four files contain the same
number of columns and types of data. The queries to all
databases will be executed in these four scenarios. In
this way, the performance of the relational databases
is tested against the columnar databases in similar
scenarios. The specification of the test scenarios are
detailed in Table 3.

2.4. Design of queries

Three types of query will be executed in the four sce-
narios already defined.

i. First query (key-value): this type of query re-
turns a single register of all data set, which will
be searched for in the database by means of a
key (id). Example:

SELECT id, item_nbr, store_nbr, date

FROM train

WHERE id = 500023352;

ii. Second query (clause where – data set): the fol-
lowing is considered for its design: the resulting
set of data should return at least one third or
more of the total of data in each scenario. As
can be seen in Table 4, the date changes in each
query to return approximately 30% of the total
of data.

iii. Third query (aggregation function): it will use
the aggregation function SUM() to calculate the
total sales of a particular store.

SELECT SUM (unit_sales)

FROM train

WHERE store_nbr = ‘12’
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Tabla 3. Specifications of the scenarios

Specification Scenario 1 Scenario 2 Scenario 3 Scenario 4
Data size 1 000 000 10 000 000 25 000 000 50 000 000
Variable Execution time (ms)

Description

Three types of queries will be executed:
· Key – value
· Data set
· Agregation function

Query Queries to a table for relational and columnar databases
policies databases

Tabla 4. Query (set of data) for the four scenarios

Scenarios Consult Returned data

1.st scenario (1 million)
SELECT id, item_nbr, store_nbr, date FROM

388 964train1m WHERE date >= ’2015-07-05’;

2.nd scenario (10 millions) SELECT id, item_nbr, store_nbr, date FROM 3 392 156train10m WHERE date >= ’2015-09-15’;

3.rd scenario (25 millions) SELECT id, item_nbr, store_nbr, date FROM 8 637 780train25m WHERE date >= ’2015-12-31’;

4.th scenario (40 millions)
SELECT id, item_nbr, store_nbr, date FROM

16 907 734train50m WHERE date >= ’2016-06-25’;

2.5. Test environment

The tests were carried out in a single machine with
the characteristics described in Table 5.

Tabla 5. Characteristics of the test environment

Software / Hardware Description
Operating sistema Ubuntu 14.04 (64-bits)
RAM Memory 16 GB

Processor AMD Radeon R7, 12 compute Cores
4C + 8G – 3,70 GHz

Hard disk 1 Terabyte

2.6. Measurement

The respective queries were executed in each scenario,
to register the response times of each database. Aqua
Data Studio, a graphical tool for tasks of administra-
tion, design and query in different databases, was used
here with the objective that measurements are more
reliable and human errors are avoided.

Measurement in the first scenario – 1 million of
records (Tables 6, 7, 8).

Tabla 6. First query (key-value)

Time in (ms)

Average
Type of
data M1 M2 M3 M4 M5
base

MySQL SQL 2 1 2 3 2 2
POSTGRESQL SQL 10 10 8 9 8 9
MONGODB NoSQL 2 3 3 2 4 2,8
MONETDB NoSQL 5 3 3 4 5 4

CASSANDRA NoSQL 4 3 3 4 3 3,4

Tabla 7. Second query (data set)

Time in (ms)

Average
Type of
data M1 M2 M3 M4 M5
base

MySQL SQL 515 594 547 484 516 531,2
POSTGRESQL SQL 462 468 460 497 453 468
MONGODB NoSQL 130 124 114 110 189 133,4
MONETDB NoSQL 191 184 190 189 211 193

CASSANDRA NoSQL 3 12 11 8 13 9,4

Tabla 8. Third query (aggregation)

Time in (ms)

Average
Type of
data M1 M2 M3 M4 M5
base

MySQL SQL 359 344 360 343 359 353
POSTGRESQL SQL 155 156 158 155 153 155,4
MONGODB NoSQL 72 64 70 88 68 72,4
MONETDB NoSQL 83 96 81 84 84 85,6

CASSANDRA NoSQL 69 72 61 49 62 62,6
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Measurement in the second scenario – 10 million
of records (Tables 9, 10, 11).

Tabla 9. First query (key-value)

Time in (ms)

Average
Type of
data M1 M2 M3 M4 M5
base

MySQL SQL 4 1 2 2 3 2,4
POSTGRESQL SQL 9 10 11 10 11 10,2
MONGODB NoSQL 4 2 2 3 4 3
MONETDB NoSQL 5 4 4 5 5 4,6

CASSANDRA NoSQL 5 5 4 6 5 5

Tabla 10. Second query (data set)

Time in (ms)

Average
Type of
data M1 M2 M3 M4 M5
base

MySQL SQL 6375 6141 6469 6672 6453 6422
POSTGRESQL SQL 4960 5739 4720 4119 5420 4991,6
MONGODB NoSQL 249 255 246 262 245 251,4
MONETDB NoSQL 267 287 248 235 305 268,4

CASSANDRA NoSQL 15 35 16 14 22 20,4

Tabla 11. Third query (aggregation function)

Time in (ms)

Average
Type of
data M1 M2 M3 M4 M5
base

MySQL SQL 4984 3437 3547 3469 3485 3784,4
POSTGRESQL SQL 1447 1411 1551 1489 1527 1485
MONGODB NoSQL 632 588 590 596 628 606,8
MONETDB NoSQL 716 724 704 705 694 708,6

CASSANDRA NoSQL 523 538 525 521 518 525

Medición del tercer escenario – 25 millones de reg-
istros (Tablas 12, 13, 14).

Tabla 12. First query (key-value)

Time in (ms)

Average
Type of
data M1 M2 M3 M4 M5
base

MySQL SQL 3 2 3 4 2 2,8
POSTGRESQL SQL 11 14 12 12 14 12,6
MONGODB NoSQL 2 3 2 4 3 2,8
MONETDB NoSQL 6 6 5 4 4 5

CASSANDRA NoSQL 6 4 6 4 4 4,8

Tabla 13. Second query (data set)

Time in (ms)

Average
Type of
data M1 M2 M3 M4 M5
base

MySQL SQL 14500 14750 14593 14641 16125 14921,8
POSTGRESQL SQL 12604 12870 12121 11930 11883 12281,6
MONGODB NoSQL 147 130 153 131 124 137
MONETDB NoSQL 406 404 419 397 413 407,8

CASSANDRA NoSQL 17 8 13 13 22 14,6

Tabla 14. Third query (aggregation function)

Time in (ms)

Average
Type of
data M1 M2 M3 M4 M5
base

MySQL SQL 10781 10937 10579 9204 9078 10115,8
POSTGRESQL SQL 4660 3778 4846 4109 3709 4220,4
MONGODB NoSQL 1488 1765 1776 1487 1454 1594
MONETDB NoSQL 1818 2513 1823 1799 1788 1948,2

CASSANDRA NoSQL 1855 1715 1936 1962 2017 1897

Medición del cuarto escenario – 50 millones de
registros (Tablas 15, 16, 17).

Tabla 15. First query (key-value)

Time in (ms)

Average
Type of
data M1 M2 M3 M4 M5
base

MySQL SQL 3 3 5 2 3 3,2
POSTGRESQL SQL 12 13 15 12 13 13
MONGODB NoSQL 4 3 2 2 3 2,8
MONETDB NoSQL 5 4 4 4 4 4,2

CASSANDRA NoSQL 7 4 11 6 9 7,4

Tabla 16. Second query (data set)

Time in (ms)

Average
Type of
data M1 M2 M3 M4 M5
base

MySQL SQL 28625 28829 29891 29828 29953 29425,2
POSTGRESQL SQL 24369 24709 26570 25182 26190 25404
MONGODB NoSQL 295 298 292 293 296 294,8
MONETDB NoSQL 779 718 654 656 767 714,8

CASSANDRA NoSQL 19 8 11 25 14 15,4

Tabla 17. Third query (aggregation function)

Time in (ms)

Average
Type of
data M1 M2 M3 M4 M5
base

MySQL SQL 21172 21266 21125 20641 20562 20953,2
POSTGRESQL SQL 7930 8110 9876 8504 8179 8519,8
MONGODB NoSQL 3196 3337 3446 2978 3667 3324,8
MONETDB NoSQL 3791 4058 3745 3629 4424 3929,4

CASSANDRA NoSQL 2989 3212 3015 3172 2905 3058,6

3. Results and discussion

The measurement results are analyzed in two sections,
by scenario and by query.

3.1. Results by scenario

The average times, in milliseconds, resulting from the
execution of the three queries in the four scenarios
(with 1, 10, 25 and 50 million records) are presented
and analyzed.
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3.1.1. First scenario – 1 million records

Table 18 shows the results obtained, in milliseconds,
during the execution of the three queries with a total
of 1 million records.

Tabla 18. Results 1 million records

First scenario
Time in (ms)
C1 C2 C3

key-value data set agregation
MySQL 2 531,2 353

PostgreSQL 9 468 155,4
MongoDB 2,8 133,4 72,4
MonetDB 4 193 85,6
Cassandra 3,4 9,4 62,6

Figura 3. Results 1 million records

Figure 3 shows that for the first query of type key-
value, no changes are observed in the execution times
among the compared databases. In the second query,
in which a where clause that returns a data set is
used, variations can be seen between the performance
of the databases, with MySQL exhibiting the worst
time of response with 531.2 milliseconds, followed by
PostgreSQL, compared with the columnar database
Cassandra that has a time of response of 9.4 millisec-
onds, which is 56.51 times more efficient than MySQL.
When employing the SUM aggregation function in the
third query, it is observed that the best times of re-
sponses are obtained with Cassandra, MonetDB and
MongoDB; Cassandra is the most efficient with 62.6
milliseconds, which is 5.64 times more efficient than
MySQL, that has a time of 353 milliseconds.

3.1.2. Second scenario – 10 million of records

Table 19 shows the results obtained, in milliseconds,
during the execution of the three queries with a total
of 10 million records.

Tabla 19. Results 10 million records

Second scenario
Time in (ms)
C1 C2 C3

key-value data set agregation
MySQL 2,4 6422 3784,4

PostgreSQL 10,2 4991,6 1485
MongoDB 3 251,4 606,8
MonetDB 4,6 268,4 708,6
Cassandra 5 20,4 525

Figure 4 shows a significant difference in the times
of response corresponding to the second and third
queries, of the columnar databases compared to the
relational databases; however, for the first query the
times of response in the two types of database keep
being regular, without variations. The databases Mon-
goDB, MonetDB and Cassandra had similar times. In
the second query, MySQL exhibited the lowest per-
formance with 6422 milliseconds, almost similar to
Postgres, compared to Cassandra with a time of 20.4
milliseconds, 314.8 times more efficient than MySQL.
In the third query, MySQL again showed the highest
time with 3784 milliseconds, compared to the 525 mil-
liseconds obtained with Cassandra; hence, the colum-
nar database was 7.21 times more efficient.

Figura 4. Results 10 million records

3.1.3. Third scenario – 25 million records

Table 20 shows the results obtained, in milliseconds,
during the execution of the three queries with a total
of 25 million records.

In the results corresponding to the third scenario,
which are shown in Figure 5, the times of response
for the first query remain similar in all databases.
For queries 2 and 3, a good performance is attained
for databases MongoDB, MonetDB and Cassandra.
Among the column oriented type databases, Cassan-
dra exhibited a time of response similar to MonetDB
in queries 2 and 3. In the second query, MySQL exhib-
ited the worst performance with 14921.8 milliseconds,
which is 1000 times greater compared to the colum-
nar database Cassandra, which had 14.6 milliseconds.
Similarly, in the third query MySQL showed a time of
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10115.8 milliseconds, which is 5.38 times slower than
the 1879 milliseconds corresponding to Cassandra.

Tabla 20. Results 25 million records

Third scenario
Time in (ms)
C1 C2 C3

key-value data set agregation
MySQL 2,8 14921,8 10115,8

PostgreSQL 12,6 12281,6 4220,4
MongoDB 2,8 137 1594
MonetDB 5 407,8 1948,2
Cassandra 4,8 14,6 1897

Figura 5. Results 25 million records

3.1.4. Fourth scenario – 50 million records.

Table 21 shows the results obtained, in milliseconds,
during the execution of the three queries with a total
of 50 million records.

Tabla 21. Results 50 million records

Fourth scenario
Time in (ms)
C1 C2 C3

key-value data set agregation
MySQL 3,2 29425,2 20953,2

PostgreSQL 13 25404 8519,8
MongoDB 2,8 294,8 3324,8
MonetDB 4,2 714,8 3929,4
Cassandra 7,4 15,4 3058,6

Figure 6 of the fourth scenario shows that the first
query remains without variations, in the time of re-
sponse in all databases. For queries 2 and 3 it can
be observed that the databases with the worst perfor-
mance are MySQL followed by PostgreSQL. MySQL
is 46.1 times slower than MonetDB, while the Post-
greSQL responded slightly better in the third query
being only 2.7 times slower than Cassandra. The latter
is the leader in efficiency, being 46 times faster than
its counterpart MonetDB in the second query.

Figura 6. Results 50 million records

3.2. Results by query

The resulting average times, in milliseconds, grouped
by query in all scenarios are presented and analyzed.

3.2.1. First query – key-value

Table 22 shows the results obtained, in milliseconds,
during the execution of the first query (key-value) in
all scenarios.

Tabla 22. Results first query

First query – key-value
# records

Database 1 MM 10 MM 25 MM 50 MM
MySQL 2 2,4 2,8 3,2

PostgreSQL 9 10,2 12,6 13
MongoDB 2,8 3 2,8 2,8
MonetDB 4 4,6 5 4,2
Cassandra 3,4 5 4,8 7,4

It can be observed in Figure 7, that the times of re-
sponse for the first query are very similar and efficient
for all databases. For both MySQL and PostgreSQL,
the times of response do not vary significantly as the
volume of data grows; the same occurs with the times
of response of Cassandra, MongoDB and MonetDB,
which remain without notable changes. None of these
databases delays more than one second in carrying out
this query.

Figura 7. Results first query
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3.2.2. Second query – data set

Table 23 shows the results obtained, in milliseconds,
during the execution of the second query (data set) in
all scenarios.

Tabla 23. Results second query

Second query – data set
# records

Database 1 MM 10 MM 25 MM 50 MM
PostgreSQL 468 4991,6 12281,6 25404
MySQL 531,2 6422 14921,8 29425,2

MongoDB 133,4 251,4 137 294,8
MonetDB 193 268,4 407,8 714,8
Cassandra 9,4 20,4 14,6 15,4

When the second query is executed, a clause where
is utilized that returns 30% of all the data. A clear
difference in the times of response can be observed in
Figure 8 as the number of records increase, between the
relational and columnar databases. With 1 MM data,
the time of response of MySQL was 531 milliseconds,
but with 50 MM data its time of response significantly
increased to 29425 milliseconds; the case of PostgreSQL
was similar. On the other hand, columnar databases
maintain an average time which is independent of the
volume of data. For instance, with 1 MM records Cas-
sandra had an execution time of 9.4 milliseconds, while
for 50 MM records such time was 15.4 milliseconds.

Figura 8. Results second query

3.3. Third query – aggregation function sum
()

Table 24 shows the results obtained, in milliseconds,
during the execution of the third query (aggregation
function) in all scenarios

Tabla 24. Results third query

Third query – aggregation function (SUM)
# records

Database 1 MM 10 MM 25 MM 50 MM
MySQL 353 3784,4 10115,8 20953,2

PostgreSQL 155,4 1485 4220,4 8519,8
MongoDB 72,4 606,8 1594 3324,8
MonetDB 85,6 708,6 1948,2 3929,4
Cassandra 62,6 525 1897 3058,6

Analyzing Figure 9for 1 and 10 million records, the
variations on the times of response in all databases do
not exhibit a significant difference, as opposed to the
cases when the volume of data increases to 25 and 50
million, for which there is a considerable variation in
the time of response between the relational and colum-
nar databases; when the query is executed with 50
million records, the time of response for PostgreSQL
is 20953 milliseconds and for MongoDB 3324 millisec-
onds. As the number of records increases, the difference
in performance between MongoDB and PostgreSQL
becomes evident. The times of response of Cassandra,
MonetDB and MongoDB is slightly affected as the
volume of data increases.

Figura 9. Results third query

Based on the results obtained and the specific char-
acteristics of each database, it was found that for the
relational databases MySQL and Postgres there is a
directly proportional relationship between volume of
data and time, i.e. as the volume of data increases,
the time of query increases in a larger proportion. In
contrast, for the columnar databases Cassandra and
MonetDB, an increase in the volume of data has a
smaller impact in the times of response.

The columnar databases exhibit a better perfor-
mance since they incorporate the in-memory technol-
ogy (in the RAM memory) for data storage and re-
covery, which enables a smaller execution time of the
queries, as opposed to the relational databases where
the performance is affected by the fact that the records
should be read from disc, which is much slower com-
pared to the RAM memory.

4. Conclusions

At the end of the present research the stated objectives
have been attained, and thus it is concluded that the
performance of a columnar database is optimal in data
analysis environments.

For the MySQL and Postgres databases, the rela-
tionship between volume of data and time is direct
and incrementally proportional; on the contrary, in the
databases Cassandra and MonetDB that belong to the
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columnar family, the times of execution do not show
notable variations as the volume of data increases.

All the databases compared had the same efficiency
in the execution of the first query of type key-value;
due to the presence of the primary key, all databases
exhibited similar execution times, thus for this query
both types of databases have an optimal performance.
On the contrary, for the second (data set) and third
(aggregation function) queries the difference in the
times of execution is rather evident. The superior per-
formance of the columnar databases, which improved
the efficiency up to 7.21 and 1900 times in the sec-
ond and third queries, respectively, is because they
highly occupy the volatile memory for data storage
and recovery, which enables a smaller execution time
of the queries, as opposed to the relational databases
for which the performance is not the best, due to the
fact that registers should be read from disc, which is
much slower than the volatile memory.

The type of columnar databases and, in general,
the NoSQL paradigm is adequate for tackling the cur-
rent big data problem, which refers to the management
of large amounts of data. It is therefore recommended
to first analyze the business logic, use case and infras-
tructure, to verify what type of database is the most
appropriate for solving problems of interest; regarding
this, other existing types of NoSQL databases may be
evaluated.

Data analysis requires databases capable of effec-
tively storing and processing large amounts of data,
and demands high performance when reading and writ-
ing; hence, traditional relational databases are not the
most adequate solution. Columnar databases arise as
a solution that fulfill performance expectations in this
field.

The SQL and NoSQL databases provide different
features, and one cannot replace the other. If the sys-
tem is not flexible in terms of consistency, the rela-
tional database administration system is the correct
option. If the system can resign to consistency up to a
certain point, the NoSQL databases may be the best
option to provide more availability, scalability and high
performance.

Therefore, depending on the stated objective, a hy-
brid model, which combines both the SQL and NoSQL
technologies, may be the choice in mind; if it is neces-
sary to maintain greater consistency, a relational way
of storage may be implemented, while for immediate or
recurrent queries, columnar databases would be used.

A future work may consider carrying out the same
study, but in a distributed and parallel environment, to
contrast and verify the results obtained in this research.
There is also the possibility of continuing this study
in more depth regarding issues such as configuration
and carrying out queries, to take better advantage of
these tools. Another future research line would focus
in a detailed analysis of writing in columnar databases,

with respect to relational databases.
This work summarizes the most important elements

and considerations that were totally developed in the-
sis [23].
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