Prediction of CO and HC emissions in Otto motors through neural networks

Main Article Content

Rogelio Santiago León Japa http://orcid.org/0000-0003-2142-3769
José Luis Maldonado Ortega http://orcid.org/0000-0002-3846-2599
Rafael Wilmer Contreras Urgiles http://orcid.org/0000-0003-2300-9457

Abstract

This paper explains the application of RNA (Artificial Neural Networks) for the prediction of pollutant emissions generated by mechanical failures in ignition engines, from which the percentage of CO (% Carbon Monoxide) and the particulate can be quantified. per million HC (ppm Unburned Hydrocarbons), through the study of the Otto cycle admission phase, which is recorded through the physical implementation of a MAP sensor (Manifold Absolute Pressure). A rigorous sampling protocol and consequent statistical analysis is applied. The selection and reduction of attributes of the MAP sensor signal is made based on the greater contribution of information and significant difference with the application of 3 statistical methods (ANOVA, correlation matrix and Random Forest), from which a base of data that allows the training of two neural networks feed-forward backpropagation, with which we obtain a classification error of 5.4061e-09 and 9.7587e-05  for the neural network of CO and HC respectively.
Abstract 456 | PDF (Español (España)) Downloads 362 PDF Downloads 19 HTML (Español (España)) Downloads 69 HTML Downloads 48 EPUB (Español (España)) Downloads 13 XML (Español (España)) Downloads 0

References

[1] F. Ballester, “Contaminación atmosférica, cambio climático y salud,” Revista Española de Salud Pública, vol. 79, pp. 159–175, 04 2005. [Online]. Available: https://bit.ly/2piHMQZ
[2] A. Restrepo, S. Izquierdo, and R. López, “Estimación de factores que inciden sobre la contaminación ambiental generada por fuentes móviles en pereira,” Scientia et technica, vol. 1, no. 37, pp. 267–272, 2007. [Online]. Available: http://dx.doi.org/10.22517/23447214.4053
[3] X. Li, D. Sun, G. Lu, J. Krabicka, and Y. Yan, “Prediction of nox emissions throughflame radical imaging and neural network based soft computing,” in 2012 IEEE International Conference on Imaging Systems and Techniques Proceedings, July 2012, pp. 502–505. [Online]. Available: https://doi.org/10.1109/IST.2012.6295594
[4] M. Cortina, “Aplicación de técnicas de inteligencia artificial a la predicción de contaminantes atmosféricos,” Ph.D. dissertation, 2012. [5] J. D. Martínez-Morales, E. R. Palacios-Hernández, and G. A. Velázquez-Carrillo, “Modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms,” Journal of Zhejiang University SCIENCE A, vol. 14, no. 9, pp. 657–670, Sep 2013. [Online]. Available: https://doi.org/10.1631/jzus.A1300010
[6] T. Fontes, L. M. Silva, S. R. Pereira, and M. C. Coelho, “Application of artificial neural networks to predict the impact of traffic emissions on human health,” in Progress in Artificial Intelligence, L. Correia, L. P. Reis, and J. Cascalho, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 21–29. [Online]. Available: https://doi.org/10.1007/978-3-642-40669-0_3
[7] J. D. Martínez-Morales, E. R. Palacios-Hernández, and G. A. Velázquez-Carrillo, “Artificial neural network based on genetic algorithm for emissions prediction of a si gasoline engine,” Journal of Mechanical Science and Technology, vol. 28, no. 6, pp. 2417–2427, Jun 2014. [Online]. Available: https://doi.org/10.1007/s12206-014-0535-2
[8] T. López Ortíz and A. Pacheco González, “Efectos de la contaminación atmosférica en la salud de las personas en la ciudad de cuenca,” 2015. [Online]. Available: https://bit.ly/32M8jnz
[9] J. Guadaluoe Almeida, “Modelación de emisiones contaminantes de fuentes móviles terrestres en Quito, Ecuador,” 2016. [Online]. Available: https://bit.ly/2qdvtG8
[10] P. León Bacuilima and C. Piña Orellana, “Predicción de emisiones contaminantes de gases de escape a través de la presión media efectiva empleando redes neuronales en motores de encendido provocado, cuenca,” 2018. [Online]. Available: https://bit.ly/2q2oTlT
[11] W. Contreras, J. Maldonado, and R. León, “Aplicación de una red neuronal feed-forward backpropagation para el diagnóstico de fallas mecánicas en motores de encendido provocado,” INGENIUS, 2019. [Online]. Available: https://doi.org/10.17163/ings.n21.2019.03