Número de coeficientes del filtro de las subportadoras en el Sistema GFDM: efecto en el desempeño

Contenido principal del artículo

Randy Verdecia Peña http://orcid.org/0000-0003-4798-2681
Humberto Millán Vega http://orcid.org/0000-0001-9421-7494

Keywords

GFDM, número de coeficientes, filtro prototipo, BER

Resumen

El GFDM (Generalized Frequency Division Multiplexing) es un esquema de transmisión multiportadora no ortogonal propuesta para la quinta (5G) y futura generación de redes inalámbricas. Por sus atractivas propiedades, está siendo investigada como una forma de onda a ser considerada para los futuros sistemas de redes de comunicaciones. La GFDM es introducida como una generalización del ampliamente utilizado esquema de modulación OFDM (Orthogonal Frequency Division Multiplexing) y usa un único prefijo cíclico (Cyclic Prefix, CP) para un grupo de símbolos. El objetivo principal de este trabajo es presentar cómo impacta la cantidad de coeficientes del filtro de las subportadoras en el desempeño del sistema. Se emplea un método simple para el cálculo de los coeficientes del filtro prototipo. Además, se presenta una estructura para la GFDM aprovechando la estructura de modulación matricial. Se evaluó la tasa de error de bit (Bit Error Rate, BER) usando los modelos de receptores presentados en este trabajo. Los resultados muestran que el BER es afectado según la cantidad de coeficientes del filtro prototipo. Basado en los resultados obtenidos, la cantidad de coeficientes tiene relación con el número de intervalos de tiempo del sistema GFDM.
Abstract 55 | PDF Downloads 57 PDF (English) Downloads 14

Citas

[1] N. Michailow, M. Matthé, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, and G. Fettweis, “Generalized frequency division multiplexing for 5th generation cellular networks,” IEEE Transactions on Communications, vol. 62, no. 9, pp. 3045–3061, Sep. 2014. [Online]. Available: https://doi.org/10.1109/TCOMM.2014.2345566
[2] E. Öztürk, E. Basar, and H. A. Çirpan, “Generalized frequency division multiplexing with flexible index modulation,” IEEE Access, vol. 5, pp. 24 727–24 746, 2017. [Online]. Available: https://doi.org/10.1109/ACCESS.2017.2768401
[3] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. T. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5gnow: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Communications Magazine, vol. 52, no. 2, pp. 97–105, February 2014. [Online]. Available: https://doi.org/10.1109/MCOM.2014.6736749
[4] L. Sendrei and S. Marchevský, “On the performance of gfdm systems undergoing nonlinear amplification,” Acta Electrotechnica et Informatica, vol. 15, no. 1, pp. 9–14, 2015. [Online]. Available: http://doi.org/10.15546/aeei-2015-0002
[5] S. K. Bandari, V. M. Vakamulla, and A. Drosopoulos, “Gfdm/oqam performance analysis under nakagami fading channels,” Physical Communication, vol. 26, pp. 162–169, 2018. [Online]. Available: https://doi.org/10.1016/j.phycom.2017.12.008
[6] F. Schaich and T. Wild, “Waveform contenders for 5g – ofdm vs. fbmc vs. ufmc,” in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), May 2014, pp. 457–460. [Online]. Available: https://doi.org/10.1109/ISCCSP.2014.6877912
[7] A. N. Ibrahim and M. F. L. Abdullah, “The potential of fbmc over ofdm for the future 5g mobile communication technology,” AIP Conference Proceedings, vol. 1883, no. 1, p. 020001, 2017. [Online]. Available: https://doi.org/10.1063/1.5002019
[8] E. Öztürk, E. Basar, and H. A. Çirpan, “Spatial modulation gfdm: A low complexity mimo-gfdm system for 5g wireless networks,” in 2016 IEEE International Black Sea Conference on Communications and Networking (BlackSea-Com), 2016, pp. 1–5. [Online]. Available: https://doi.org/10.1109/BlackSeaCom.2016.7901544
[9] A. Farhang, N. Marchetti, and L. E. Doyle, “Low-complexity modem design for gfdm,” IEEE Transactions on Signal Processing, vol. 64, no. 6, pp. 1507–1518, March 2016. [Online]. Available: https://doi.org/10.1109/TSP.2015.2502546
[10] A. M. Tonello and M. Girotto, “Cyclic block fmt modulation for broadband power line Verdecia Peña y Millán Vega / Número de coeficientes del filtro de las subportadoras en el Sistema GFDM: efecto en el desempeño 61 communications,” in 2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, March 2013, pp. 247–251. [Online]. Available: https://doi.org/10.1109/ISPLC.2013.6525858
[11] G. Fettweis, M. Krondorf, and S. Bittner, “Gfdm - generalized frequency division multiplexing,” in VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, April 2009, pp. 1–4. [Online]. Available: https://doi.org/10.1109/VETECS.2009.5073571
[12] H. Lin and P. Siohan, “An advanced multicarrier modulation for future radio systems,” in 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), May 2014, pp. 8097–8101. [Online]. Available: https://doi.org/10.1109/ICASSP.2014.6855178
[13] M. Renfors, J. Yli-Kaakinen, and F. J. Harris, “Analysis and design of efficient and flexible fastconvolution based multirate filter banks,” IEEE Transactions on Signal Processing, vol. 62, no. 15, pp. 3768–3783, Aug 2014. [Online]. Available: https://doi.org/10.1109/TSP.2014.2330331
[14] A. Farhang, N. Marchetti, L. E. Doyle, and B. Farhang-Boroujeny, “Filter bank multicarrier for massive mimo,” in 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Sep. 2014, pp. 1–7. [Online]. Available: https://doi.org/10.1109/VTCFall.2014.6965986
[15] R. Datta and G. Fettweis, “Improved aclr by cancellation carrier insertion in gfdm based cognitive radios,” in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), May 2014, pp. 1–5. [Online]. Available: https://doi.org/10.1109/VTCSpring.2014.7022943
[16] B. Farhang-Boroujeny and H. Moradi, “Derivation of gfdm based on ofdm principles,” in 2015 IEEE International Conference on Communications (ICC), June 2015, pp. 2680–2685. [Online]. Available: https://doi.org/10.1109/ICC.2015.7248730
[17] R. Verdecia Peña, R. Pereira David, and R. Sampaio-Neto, “Detecção de sinais e estimação de canal em sistemas gfdm,” in XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinal SBrT2019, At: Petrópolis, RJ, 2019. [Online]. Available: https://bit.ly/34VPal7
[18] R. Verdecia Peña, “Análise espectral, detecção de sinais e estimação de canal em sistemas GFDM,” Master’s thesis, 2019. [Online]. Available: https://bit.ly/34LM96N
[19] J. P. Mayoral Arteaga, “Detecção de sinais em sistemas comtransmissão gfdm,” Master’s thesis, 2017. [Online]. Available: https://bit.ly/2DEbbc2
[20] J. P. Mayoral Arteaga, R. Pereira David, and R. Sampaio Neto, “Simultaneous detection and parallel interference cancellation in GFDM for 5G,” in XXXV Simposio brasileiro de telecomunicacções e processamento de sinais - SBRT2017, 3-6 de setembro de 2017, São Pedro, SP, 2017, pp. 220–224. [Online]. Available: https://bit.ly/387wqRF
[21] R. Verdecia Peña, “Análisis del desempeño de los esquemas de modulación BPSK y QPSK para diferentes condiciones de canales en sistema GFDM,” MASKAY, vol. 8, no. 1, pp. 7–112, 2018. [Online]. Available: http://dx.doi.org/10.24133/maskay.v8i1.506
[22] ——, “Desempeño de los métodos de detección de señales con modulación QPSK en sistema GFDM para 5G.” Revista Cubana de Ciencias Informáticas, vol. 12, pp. 104–120, 09 2018. [Online]. Available: https://bit.ly/33GWbo9
[23] N. Michailow, R. Datta, S. Krone, M. Lentmaier, and G. Fettweis, “Generalized frequency division multiplexing: A flexible multi-carrier modulation scheme for 5th generation cellular networks,” 2012. [Online]. Available: https://bit.ly/2rQep9B
[24] N. Michailow, S. Krone, M. Lentmaier, and G. Fettweis, “Bit error rate performance of generalized frequency division multiplexing,” in 2012 IEEE Vehicular Technology Conference (VTC Fall), Sep. 2012, pp. 1–5. [Online]. Available: https://doi.org/10.1109/VTCFall.2012.6399305
[25] S. Mirabbasi and K. Martin, “Overlapped complex-modulated transmultiplexer filters with simplified design and superior stopbands,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 8, pp. 456–469, Aug 2003. [Online]. Available: https://doi.org/10.1109/TCSII.2003.813592
[26] K. W. Martin, “Small side-lobe filter design for multitone data-communication applications,” IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 45, no. 8, pp. 1155–1161, Aug 1998.