Artículo Científico / Scientific Paper |
|
|
|
https://doi.org/10.17163/ings.n23.2020.05 |
|
|
pISSN: 1390-650X / eISSN: 1390-860X |
|
NÚMERO DE COEFICIENTES DEL FILTRO DE LAS SUBPORTADORAS EN EL SISTEMA GFDM: EFECTO EN EL DESEMPEÑO
|
||
NUMBER OF SUBCARRIER FILTER COEFFICIENTS IN GFDM SYSTEM: EFFECT ON PERFORMANCE |
Randy Verdecia Peña1,*, Humberto Millán Vega2 |
Resumen |
Abstract |
El GFDM (Generalized Frequency Division Multiplexing) es un esquema de transmisión multiportadora no ortogonal propuesta para la quinta (5G) y futura generación de redes inalámbricas. Por sus atractivas propiedades, está siendo investigada como una forma de onda a ser considerada para los futuros sistemas de redes de comunicaciones. La GFDM es introducida como una generalización del ampliamente utilizado esquema de modulación OFDM (Orthogonal Frequency Division Multiplexing) y usa un único prefijo cíclico (Cyclic Prefix, CP) para un grupo de símbolos. El objetivo principal de este trabajo es presentar cómo impacta la cantidad de coeficientes del filtro de las subportadoras en el desempeño del sistema. Se emplea un método simple para el cálculo de los coeficientes del filtro prototipo. Además, se presenta una estructura para la GFDM aprovechando la estructura de modulación matricial. Se evaluó la tasa de error de bit (Bit Error Rate, BER) usando los modelos de receptores presentados en este trabajo. Los resultados muestran que el BER es afectado según la cantidad de coeficientes del filtro prototipo. Basado en los resultados obtenidos, la cantidad de coeficientes tiene relación con el número de intervalos de tiempo del sistema GFDM. |
Generalized Frequency Division Multiplexing (GFDM) is a non-orthogonal multicarrier transmission scheme proposed for fifth (5G) and future generation wireless networks. Due to its attractive properties, it has been recently discussed as a candidate waveform for the future wireless communication systems. GFDM is introduced as a generalized form of the widely used Orthogonal Frequency Division Multiplexing (OFDM) modulation scheme and it uses only one cyclic prefix (CP) for a group of symbols. The main focus of this work is to present like impact on the system performance the coefficient quantity of the subcarrier filter. A simple method for the computation of the coefficients of the prototype filter is employed. Besides, it is presented a structure for the GFDM by taking advantage of the arrangement in the modulation matrix. We evaluated the Bit Error Rate (BER) using the receiver models presented in this work. The results showed that the BER is affected according to the coefficients quantity of the prototype filter. Based on the obtained results, the coefficients quantity has a relation with the number of time slots of the GFDM system. |
|
|
Palabras clave: GFDM, número de coeficientes, filtro prototipo, BER. |
Keywords: GFDM, number of coefficients, prototype filter, BER. |
1,*Departamento de
Señales, Sistemas y Radiocomunicaciones, Escuela Técnica Superior de Ingenieros
de Telecomunicaciones (ETSIT), Universidad Politécnica de Madrid, España.
Autor para correspondencia ): randy.verdecia@upm.es 2Departamento
de Física (Retirado), Universidad de Granma – Cuba. |
|
Recibido: 25-06-2019, aprobado tras revisión: 25-11-2019 Forma sugerida de citación: Verdecia Peña, R. y Millán Vega, H. (2020). «Número de coeficientes del filtro de las subportadoras en el Sistema GFDM: efecto en el desempeño». Ingenius. N.°23, (enero-junio). pp. 53-61. doi: https://doi.org/10.17163/ings.n23.2020.05. |
1. Introducción
Las comunicaciones inalámbricas y móviles se han convertido en herramientas esenciales para la vida y la sociedad moderna. Las redes de telecomunicación del futuro necesitan un mayor rendimiento sobre la base de eficiencias espectral y energética muy elevadas, latencia muy pequeña y velocidades de datos muy altas. Para esto se requiere una capa física (PHY) más efectiva [1–3]. La esencia de la capa física de las redes de cuarta generación (4G) es la multiplexación por división en frecuencias ortogonales (OFDM, Orthogonal Frequency Division Multiplexing). Estos sistemas permiten alcanzar un alto rendimiento de datos. La modulación OFDM es ampliamente utilizada debido a sus características favorables como implementación sencilla basada en la transformada rápida de Fourier (FFT, Fast Fourier Transform), y robustez contra canales con desvanecimiento [2, 4]. Sin embargo, el escenario de aplicación que se ha previsualizado para las redes de quinta generación (5G) posee retos donde la modulación OFDM podría tener limitaciones. La baja latencia que se necesita para las comunicaciones vehículo a vehículo y las aplicaciones táctiles de Internet requieren un umbral de datos donde el paquete OFDM con un prefijo cíclico (CP, Cyclic Prefix) por símbolo tiene una baja eficiencia espectral [1, 4–6]. El requerimiento de OFDM de preservar la ortogonalidad entre subportadoras individuales es esencial para la comunicación máquina a máquina (M2M, Machine-to-Machine). Dada la necesidad de bajo consumo de potencia que influye en forma negativa en el proceso de sincronización, este procedimiento no es posible con la modulación OFDM [4, 7]. Otra desventaja del sistema OFDM es la alta radiación fuera de banda (OOB, out-of-band) que resulta de la forma rectangular del pulso [8]. Debido a estas deficiencias, OFDM puede satisfacer los requerimientos del 5G de forma limitada. En los últimos años se han propuesto diferentes formas de onda para superar las limitaciones previamente citadas de OFDM; tal es el caso de FBMC, UFMC y GFDM en las referencias [9–14], en las que se sugieren numerosas formas de onda. En la multiportadora de banco de filtros (FBMC, Filter Bank Multicarrier) se da forma a los pulsos de las subportadoras individualmente para reducir las emisiones OOB, causadas por el ancho de banda angosto de las subportadoras, y por la larga longitud de la respuesta al impulso del filtro transmisor. Las aplicaciones que necesitan transmitir un número grande de símbolos sacan provecho de esta modulación. Sin embargo, está claro que este esquema de modulación no es apropiado para escenarios de baja latencia, donde debe alcanzarse alta eficiencia con la transmisión de ráfagas cortas [1, 5–7]. En la multiportadora filtrada de manera universal (UFMC, Universal Filtered Multicarrier) se filtra un grupo de subportadoras para reducir la emisión OOB. La característica principal de esta modulación es que la respuesta al impulso puede ser corta, obteniendo alta eficiencia espectral en transmisiones cortas [1]. |
La desventaja de UFMC es que no requiere un CP, por lo que es más sensible que CP-OFDM a la desalineación de tiempo corto, y podría no ser apropiado para aplicaciones que necesitan un tiempo largo de sincronización con el fin de ahorrar energía [1, 5, 6]. En este contexto, la multiplexación por división en frecuencias generalizadas (GFDM, Generalized Frequency Division Multiplexing) es una alternativa de esquema multiportadora que está siendo evaluada actualmente como una candidata de capa PHY para la próxima generación de sistemas de comunicaciones móviles. Es interesante notar que la importancia de la GFDM es ser una forma generalizada de la OFDM que preserva la mayoría de sus valiosas propiedades, mientras aborda sus limitaciones. La GFDM puede ofrecer una radiación OOB muy baja. Además, es más eficiente que la OFDM en ancho de banda, ya que utiliza un solo CP para un grupo de símbolos en un bloque, en vez de un CP por símbolo como en el caso de la OFDM [9, 15]. La modulación GFDM está concebida para la modulación de bloques independientes, donde cada bloque consiste de un número de subportadoras y símbolos. Los símbolos de datos pertenecientes a las subportadoras son filtros con un prototipo que es desplazado circularmente en los dominios del tiempo y de la frecuencia. El filtrado de las subportadoras resulta en subportadoras no ortogonales, lo que podría producir interferencias entre símbolos (ISI, Inter Symbol Interference) y entre portadoras (ICI, Inter Carrier Interference). La respuesta impulso del filtro (FIR, Filter Impulse Response) puede ser utilizada para filtrar las subportadoras, y esta opción tiene un impacto negativo en el desempeño de la tasa de error binario (BER, Bit Error Rate) y en las emisiones OOB, como se muestra en [1]. En este trabajo se presentan curvas de BER para comparar la influencia que tiene la selección del número total de coeficientes del filtro en los sistemas GFDM. Es necesario presentar este aspecto porque el desempeño se degrada cuando el número total de coeficientes no se elige correctamente. Un símbolo GFDM consiste de una estructura de bloque con MN muestras, donde cada subportadora N transporta M intervalos de tiempo. En un bloque GFDM, la sobrecarga se mantiene pequeña agregando un único CP para un bloque completo que contiene múltiples subportadoras. De este modo, puede utilizarse un período que ayude a mejorar la eficiencia espectral del sistema. Las secciones restantes se organizan de la siguiente manera. El modelo del sistema y las propiedades del transmisor GFDM se presentan en la Sección 2. La Sección 3 presenta diferentes estructuras de receptor. La Sección 4 muestra la expresión del filtro prototipo que se obtiene de los coeficientes del filtro de subportadora. La Sección 5 analiza el desempeño de la BER en la GFDM, incluyendo las ecuaciones teóricas suponiendo receptores sin impulso (ZF, Zero-Forcing), filtro adaptado (MF, Matched Filter) y filtro adaptado con cancelación de interferencia paralela (MF-PIC, Matched Filter–Parallel Interference Cancellation). Se tilizaron los coeficientes obtenidos |
en la Sección 4. Finalmente, la Sección 6 presenta algunas conclusiones. El objetivo principal de este trabajo es presentar una estructura para la GFDM aprovechando el arreglo en la matriz de modulación. Notación: Se utiliza
minúscula en negrita para los vectores columna y mayúscula en negrita para
las matrices. Todos los vectores están en forma de columna. La transpuesta y
la hermítica de vectores y matrices se indican por los superíndices ‘T’
y ‘H’, respectivamente. Se utiliza WMN para
denotar la matriz transformada discreta de Fourier (DFT, Discrete Fourier
Transform) de tamaño MN. Asimismo, se supone que WMN
está normalizada, tal que WMN
2. Materiales y métodos
2.1. Modelo del sistema y propiedades del GFDM
La multiplexación por división en frecuencias generalizadas (GFDM) es un sistema multiportador. El paquete de datos en la GDFM es tal que solo se requiere un CP por bloque de símbolos transmitidos [10]. La Figura 1 presenta la estructura de un paquete de datos GDFM. En el sistema GFDM los símbolos de datos sobre cada subportadora se filtran a través de un filtro pasabanda bien localizado, con la finalidad de limitar la interferencia entre portadoras (ICI) [16]. El paquete de datos del GDFM está organizado en M intervalos de tiempo y M subportadoras.
Figura 1. Paquete de datos GFDM.
El sistema OFDM puede producir alta radiación fuera de banda (OOB) y una menor eficiencia en ancho de banda en comparación con GFDM [1,8] debido al hecho de que el sistema OFDM utiliza un CP por símbolo, como se presenta en la Figura 2
Figura 2. Paquete de datos OFDM. |
Considere el
diagrama de bloques del transceptor mostrado en la Figura 3. Un mapeador, por
ejemplo, QAM [7], mapea los bits codificados a símbolos de una constelación
compleja de 2α valores, donde α es el orden de la modulación.
El vector s denota un bloque de datos que contiene MN símbolos,
que puede descomponerse en M intervalos de tiempo y N subportadoras,
cada una de acuerdo con
Figura 3. Diagrama de bloques del transceptor para GFDM.
Los símbolos de
los datos son tomados de un proceso independiente e idénticamente distribuido
(i.i.d.) de media cero y varianza unitaria. La expresión que relaciona los
símbolos de los datos de entrada
donde La expresión (1)
se implementa en dos pasos. Primero se ejecuta la convolución circular de |
Es útil comentar que la complejidad
computacional representada por (1) está determinada de manera dominante por
una iFFT de dimensión
donde
donde
Los símbolos de datos
donde
donde |
del filtro
prototipo que afectan el desempeño del sistema. Los coeficientes
2.2. Implementación del receptor
El vector
donde
A partir de la matriz representada por la ecuación
(7), pueden utilizarse dos tipos de receptores GFDM estándar, es decir, Sin Impulso (ZF) y Filtro Adaptado (Matched Filter, MF) [4],
[22, 23]. Se ha definido la matriz
El esquema de ecualización utilizado en este trabajo se presenta
en la Figura 4. En el diagrama de bloques,
|
||||||||||||||||||
Figura 4. Diagrama de bloques del receptor para el GFDM.
El receptor ZF se caracteriza por la
matriz
donde El segundo tipo de receptor,
el MF, es descrito por la matriz
donde
La implementación del detector PIC presenta la menor complejidad computacional, en comparación con otros detectores de cancelación como SIC [17-20]. La primera estimación de los símbolos de datos al detector PIC se obtiene como la señal de salida del detector MF. Este receptor puede implementarse por las ecuaciones:
donde Las estimaciones de símbolos
utilizando las ecuaciones (11) y (12) son generadas secuencialmente hasta un
número máximo de J iteraciones. En el presente trabajo se consideró que el
proceso puede ser interrumpido después de la |
Si
se detecta una reducción en la calidad de un estimado dado, esto es,
2.3. Cálculo de los Coeficientes de los Filtros de las Subportadoras
El filtrado de las subportadoras en el bloque modulador GFDM que se presenta en la Figura 3 es esencial para el desempeño del sistema. En esta sección se presenta cómo determinar sus coeficientes. El filtro prototipo que se presenta en [16, 24-26], corresponde a una clase de filtros pasa-bajo reales cuya respuesta al impulso puede expresarse como:
donde De
acuerdo a Mirabbasi y Martin [25], los coeficientes
Si los coeficientes Se requiere determinar los coeficientes
Si se satisface la ecuación (16),
entonces los lóbulos laterales de la transformada discreta de Fourier en la
ecuación (14) tienen la tasa aproximada de decaimiento (fall-off rate) de
Mediante las ecuaciones (15) y (16) es
posible construir un sistema de ecuaciones con el mismo número de incógnitas.
Además, la ecuación (18) puede utilizarse para construir las ecuaciones
restantes necesarias para tener un sistema de |
Con las ecuaciones previas es posible
obtener los valores de los coeficientes del filtro prototipo para
Tabla 1. Coeficientes del Filtro prototipo F
3. Resultados y Discusión
Esta sección presenta los resultados de las simulaciones junto con las expresiones teóricas obtenidas. Con el fin de estudiar el efecto en la BER del número de coeficientes del filtro de las subportadoras en el sistema GFDM, se ha considerado en caso de los receptores ZF, MF y MF-PIC.
3.1. Análisis de la Tasa de Error Binario (BER)
En esta subsección se analiza el desempeño del sistema GFDM en
términos de la BER vs. |
Tabla 2. Parámetros del Sistema
Tabla 3. Modelo del Canal
La
Figura 5 compara el desempeño de la BER del ZF clásico en el sistema GFDM con
diferentes números de coeficientes del filtro de las subportadoras,
considerando los parámetros del sistema de la Tabla 2 y el canal con
multipath de la Tabla 3. Los resultados presentados en la Figura 5 sugieren
que el sistema GFDM logró el mejor desempeño cuando
Figura 5. Resultados de la simulación de la BER para el receptor ZF en GFDM (I), canal I. |
Figura 6. Resultados de la simulación de la BER para el receptor MF en GFDM (I), canal I.
Las
Figuras 6 y 7 ilustran el desempeño de la BER para los receptores MF y
MF-PIC, respectivamente, considerando los tres casos de
Figura 7. Resultados de la simulación de la BER para el receptor MF-PIC en GFDM (I), canal I.
Los
resultados mostrados en la Figura 8 sugieren que utilizando |
afectado por la matriz de transmisión, que depende del número de coeficientes. Sin embargo, ambos sistemas tienen la misma complejidad computacional en la generación de la señal ya que necesitan FFT 64, pero el GFDM es más eficiente que OFDM en términos de espectro porque sólo necesita un CP para transmitir un paquete de datos de 256 símbolos. Por otra parte, la gran diferencia en el desempeño de la BER del 4-QAM es producida porque se considera como un sistema con AWGN. En las simulaciones ambos sistemas tienen la misma complejidad computacional en la generación de la señal ya que ambos necesitan FFT 64, pero el GFDM es más eficiente que OFDM en términos del espectro porque sólo necesita un CP para transmitir un paquete de datos de 256 símbolos.
Figura 8 Comparación de los resultados de las simulaciones para los receptores
ZF, MF y MF-PIC en GFDM (I) con
La Figura 9 presenta otras simulaciones
considerando que el sistema GFDM tiene matrices de dimensión |
Figura 9. Comparación de los resultados de las simulaciones para los receptores ZF, MF y MF-PIC en GFDM (II) con F = 15 y ZF CP-OFDM FFT 32, canal II.
4. Conclusiones
Los escenarios de implementación esperados para las redes inalámbricas 5G plantean retos, ya que las tecnologías disponibles de capa física exhiben un desempeño limitado debido a sus deficiencias. El sistema GFDM parece un candidato útil por su rendimiento con el sistema OFDM. La propiedad clave del sistema GFDM es su flexibilidad, tal que diferentes aplicaciones pueden tener una solución simple. De esta manera, es importante garantizar la coexistencia con otras tecnologías, como la 4G actual. Se produjeron esquemas de modulación y demodulación para el sistema GFDM. Los esquemas presentados tienen una estructura matricial que reduce la complejidad computacional, sin incurrir en ninguna penalización por deterioro del desempeño. Utilizando la estructura matricial del transmisor y del receptor de los sistemas GFDM, se analizó y comparó el desempeño en la BER para los diferentes coeficientes calculados. Se mostró que el desempeño de la BER en el sistema GFDM depende del número de coeficientes del filtro y del filtro prototipo. En el sistema GFDM, el incremento del número total de coeficientes del filtro no mejora el desempeño. El total de coeficientes depende del número de subportadoras, porque podría filtrar símbolos de otros paquetes y generar interferencia. El desempeño del sistema está condicionado por el número preciso de coeficientes.
Referencias
[1] N. Michailow, M. Matthé, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, and G. Fettweis, “Generalized frequency division multiplexing for 5th generation cellular networks,” IEEE Transactions on Communications, vol. 62, no. 9, pp. 3045–3061, Sep. 2014. [Online]. Available: https://doi.org/10.1109/TCOMM.2014.2345566
[2] E. Öztürk, E. Basar, and H. A. Çirpan, “Generalized frequency division multiplexing amplification,” Acta Electrotechnica et |
with flexible index modulation,” IEEE Access, vol. 5, pp. 24 727–24 746, 2017. [Online]. Available: https://doi.org/10.1109/ACCESS.2017.2768401
[3] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. T. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5gnow: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Communications Magazine,
[4] L. Sendrei and S. Marchevský, “On the performance of gfdm systems undergoing nonlinear Informatica, vol. 15, no. 1, pp. 9–14, 2015. [Online]. Available: http://doi.org/10.15546/aeei-2015-0002
[5] S. K. Bandari, V. M. Vakamulla, and A. Drosopoulos, “Gfdm/oqam performance analysis under nakagami fading channels,” Physical Communication, vol. 26, pp. 162–169, 2018. [Online]. Available: https://doi.org/10.1016/j.phycom.2017.12.008
[6] F. Schaich and T. Wild, “Waveform contenders for 5g – ofdm vs. fbmc vs. ufmc,” in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), May 2014, pp. 457–460. [Online]. Available: https: //doi.org/10.1109/ISCCSP.2014.6877912 https: //doi.org/10.1109/ISCCSP.2014.6877912
[7] A. N. Ibrahim and M. F. L. Abdullah, “The potential of fbmc over ofdm for the future 5g mobile communication technology,” AIP Conference Proceedings, vol. 1883, no. 1, p. 020001, 2017. [Online]. Available: https://doi.org/10.1063/1.5002019
[8] E. Öztürk, E. Basar, and H. A. Çirpan, “Spatial modulation gfdm: A low complexity mimo-gfdm system for 5g wireless networks,” in 2016 IEEE International Black Sea Conference on Communications and Networking (BlackSea-Com), 2016, pp. 1–5. [Online]. Available: https: //doi.org/10.1109/BlackSeaCom.2016.7901544
[9] A. Farhang, N. Marchetti, and L. E. Doyle, “Low-complexity modem design for gfdm,” IEEE Transactions on Signal Processing, vol. 64, no. 6, pp. 1507–1518, March 2016. [Online]. Available: https://doi.org/10.1109/TSP.2015.2502546
[10] A. M. Tonello and M. Girotto, “Cyclic block fmt modulation for broadband power line communications,” in 2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, March 2013, pp. 247–251. [Online]. Available: https://doi.org/10.1109/ISPLC.2013.6525858 |
[11] G. Fettweis, M. Krondorf, and S. Bittner, “Gfdm - generalized frequency division multiplexing,” in VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, April 2009, pp. 1–4. [Online]. Available: https://doi.org/10.1109/VETECS.2009.5073571
[12] H. Lin and P. Siohan, “An advanced multicarrier modulation for future radio systems,” in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 8097–8101. [Online]. Available: https://doi.org/10.1109/ICASSP.2014.6855178
[13] M. Renfors, J. Yli-Kaakinen, and F. J. Harris, “Analysis and design of efficient and flexible fastconvolution based multirate filter banks,” IEEE Transactions on Signal Processing, vol. 62, no. 15, pp. 3768–3783, Aug 2014. [Online]. Available: https://doi.org/10.1109/TSP.2014.2330331
[14] A. Farhang, N. Marchetti, L. E. Doyle, and B. Farhang-Boroujeny, “Filter bank multicarrier for massive mimo,” in 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Sep. 2014, pp. 1–7. [Online]. Available: https://doi.org/10.1109/VTCFall.2014.6965986
[15] R. Datta and G. Fettweis, “Improved aclr by cancellation carrier insertion in gfdm based cognitive radios,” in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), May 2014, pp. 1–5. [Online]. Available: https: //doi.org/10.1109/VTCSpring.2014.7022943
[16] B. Farhang-Boroujeny and H. Moradi, “Derivation of gfdm based on ofdm principles,” in 2015 IEEE International Conference on Communications (ICC), June 2015, pp. 2680–2685. [Online]. Available: https://doi.org/10.1109/ICC.2015.7248730
[17] R. Verdecia Peña, R. Pereira David, and R. Sampaio-Neto, “Detecção de sinais e estimação de canal em sistemas gfdm,” in XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinal SBrT2019, At: Petrópolis, RJ, 2019. [Online]. Available: https://bit.ly/34VPal7
[18] R. Verdecia Peña, “Análise espectral, detecção de sinais e estimação de canal em sistemas GFDM,” Master’s thesis, 2019. [Online]. Available: https://bit.ly/34LM96N |
[19] J. P. Mayoral Arteaga, “Detecção de sinais em sistemas comtransmissão gfdm,” Master’s thesis, 2017. [Online]. Available: https://bit.ly/2DEbbc2
[20] J. P. Mayoral Arteaga, R. Pereira David, and R. Sampaio Neto, “Simultaneous detection and parallel interference cancellation in GFDM for 5G,” in XXXV Simposio brasileiro de telecomunicacções e processamento de sinais - SBRT2017, 3-6 de setembro de 2017, São Pedro, SP, 2017, pp. 220–224. [Online]. Available: https://bit.ly/387wqRF
[21] R. Verdecia Peña, “Análisis del desempeño de los esquemas de modulación BPSK y QPSK para diferentes condiciones de canales en sistema GFDM,” MASKAY, vol. 8, no. 1, pp. 7–112, 2018. [Online]. Available: http://dx.doi.org/10.24133/maskay.v8i1.506
[22] ——, “Desempeño de los métodos de detección de señales con modulación QPSK en sistema GFDM para 5G.” Revista Cubana de Ciencias Informáticas, vol. 12, pp. 104–120, 09 2018. [Online]. Available: https://bit.ly/33GWbo9
[23] N. Michailow, R. Datta, S. Krone, M. Lentmaier, and G. Fettweis, “Generalized frequency division multiplexing: A flexible multi-carrier modulation scheme for 5th generation cellular networks,” 012. [Online]. Available: https://bit.ly/2rQep9B
[24] N. Michailow, S. Krone, M. Lentmaier, and G. Fettweis, “Bit error rate performance of generalized frequency division multiplexing,” in 2012 IEEE Vehicular Technology Conference (VTCFall), Sep. 2012, pp. 1–5. [Online]. Available: https://doi.org/10.1109/VTCFall.2012.6399305
[25] S. Mirabbasi and K. Martin, “Overlapped complex-modulated transmultiplexer filters with simplified design and superior stopbands,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 8, pp. 456–469, Aug 2003. [Online]. Available: https://doi.org/10.1109/TCSII.2003.813592
[26] K. W. Martin, “Small side-lobe filter design for multitone data-communication applications,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no. 8, pp. 1155–1161, Aug 1998. |