Speed control of a permanent magnet synchronous motor actuated by a three-phase multi level inverter

Main Article Content

Rosalino Mayoral Lagunez https://orcid.org/0000-0003-3420-7416
José Antonio Juárez Abad https://orcid.org/0000-0003-0279-9381
Beatriz Angélica Aguilar López https://orcid.org/0000-0002-2769-4992
Jesús Linares Flores https://orcid.org/0000-0002-5723-4786
Jorge Luis Barahona Avalos https://orcid.org/0000-0002-5502-6692


This paper presents the design and FPGA embedded implementation of robust controller design to speed tracking problem for a Permanent Magnet Synchronous Motor (PMSM). Then, a linear controller based on the exact static error dynamics passive output feedback (ESEDPOF) is proposed, where the uncertainty estimation is taken into account. The technique of passivity requires knowing the load torque, this is estimated with a traditional reduced-order observer. PMSM is driven by a five levels Three-Phase Cascaded Cell Multi-Level Inverter (3Φ -CCMLI). The medium-scale field-programmable gate array (FPGA) Spartan-6 XC6SLX9 is used for implementing the ESEDPOF controller, the reduced-order observer, and the multilevel pulse width modulator. The parallel processing provided by these devices allowed to obtain a sampling time of 10us. Simulation and Experimental validation shows an excellent dynamical performance.
Abstract 596 | PDF (Español (España)) Downloads 402 PDF Downloads 32 HTML (Español (España)) Downloads 60 HTML Downloads 51 EPUB (Español (España)) Downloads 3 XML (Español (España)) Downloads 0


[1] T. Wildi, Máquinas eléctricas y sistemas de potencia, 2007. [Online]. Available: https://bit.ly/35aPtZm
[2] L. Blanco Rubio, “Diseño electromagnético de un motor síncrono de imanes permanentes para el accionamiento directo de la hélice de un barco,” 2017. [Online]. Available: https://bit.ly/2PAJZAj
[3] J. Linares-Flores, C. García-Rodríguez, O. D. Ramírez-Cárdenas, C. Escobar-Noriega, and M. A. Contreras-Ordaz, “Control robusto de seguimiento suave de posición angular del motor síncrono de imanes permanentes,” in Memorias del XVI Congreso Latinoamericano de Control Automático, Octubre 14-17, 2014. Cancún, Quintana Roo, México, 2014, pp. 1113–1118. [Online]. Available: http://doi.org/10.13140/2.1.2760.9607
[4] J. Linares-Flores, C. Garcia-Rodriguez, H. Sira-Ramirez, and O. D. Ramirez-Cärdenas, “Robust backstepping tracking controller for low speed pmsm positioning system: Design, analysis, and implementation,” in 2015 IEEE International Conference on Industrial Technology (ICIT), March 2015, pp. 2131–2138. [Online]. Available: https://doi.org/10.1109/ICIT.2015.7125411
[5] IEEE, “Ieee recommended practices and requirements for harmonic control in electrical power systems,” IEEE Std 519-1992, pp. 1–112, April 1993. [Online]. Available: https://doi.org/10.1109/IEEESTD.1993.114370
[6] M. H. Rashid, Electrónica de potencia: circuitos, dispositivos y aplicaciones, 2004. [Online]. Available: https://bit.ly/2t9mZ42
[7] J. A. Juárez-Abad, J. Linares-Flores, E. Guzmán-Ramírez, and H. Sira-Ramírez, “Generalized proportional integral tracking controller for a single-phase multilevel cascade inverter: An fpga implementation,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 256–266, Feb 2014. [Online]. Available: https://doi.org/10.1109/TII.2013.2242085
[8] F. Chauca Llusca, F. Llerena Rengel, and P. Chico Hidalgo, “Diseño y construcción de un inversor multinivel,” Revista Politécnica, vol. 33, no. 1, 2014. [Online]. Available: https://bit.ly/36rAxpI
[9] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The age of multilevel converters arrives,” IEEE Industrial Electronics Magazine, vol. 2, no. 2, pp. 28–39, June 2008. [Online]. Available: https://doi.org/10.1109/MIE.2008.923519
[10] E. Monmasson, L. Idkhajine, and M. W. Naouar, “Fpga-based controllers,” IEEE Industrial Electronics Magazine, vol. 5, no. 1, pp. 14–26, March 2011. [Online]. Available: https://doi.org/10.1109/MIE.2011.940250
[11] D. G. Maxinez and J. Alcalá Jara, VHDL: el arte de programar sistemas digitales, 2002. [Online]. Available: https://bit.ly/2PCE8dL
[12] J. J. Rodríguez-Andina, M. D. Valdés-Peña, and M. J. Moure, “Advanced features and industrial applications of FPGAs–a review,” IEEE Transactions on Industrial Informatics, vol. 11, no. 4, pp. 853–864, Aug 2015. [Online]. Available: https://doi.org/10.1109/TII.2015.2431223
[13] W. Zhu, “Fpga logic devices for precision control: An application to large friction actuators with payloads,” IEEE Control Systems Magazine, vol. 34, no. 3, pp. 54–75, June 2014. [Online]. Available: https://doi.org/10.1109/MCS.2014.2308691
[14] E. Mandado, L. J. Álvarez, and M. D. Valdés, Dispositivos Lógicos Programables, 2002. [Online]. Available: https://bit.ly/38uCiEq
[15] R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, 2017. [16] H. J. Marquez, Nonlinear control systems: analysis and design. Wiley-Interscience Hoboken, 2003, vol. 1. [Online]. Available: https://bit.ly/2YMdMKM
[17] Y. E. Gliklikh, “Necessary and sufficient conditions for global-in-time existence of solutions of ordinary, stochastic, and parabolic differential equations,” Abstract and Applied Analysis, vol. 2006, Special Issue, p. 17, 2006. [Online]. Available: https://doi.org/10.1155/AAA/2006/39786
[18] IEEE, IEEE 754-2019 - IEEE Standard for Floating-Point Arithmetic, 2019. [Online]. Available: https://bit.ly/2E5tnvo
[19] M. Naouar, E. Monmasson, A. A. Naassani, I. Slama-Belkhodja, and N. Patin, “FPGA-based current controllers for AC machine drives–a review,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1907–1925, Aug 2007. [Online]. Available: https://doi.org/10.1109/TIE.2007.898302