Filtraje robusto de señales débiles de fenómenos reales

Contenido principal del artículo

Fernando Ramos-Alarcon https://orcid.org/0000-0001-6202-2748
Valeri Kontorovich http://orcid.org/0000-0002-1307-3001

Resumen

En un gran número de escenarios de la vida real se requiere procesar señales de interés que se encuentran muy inmersas en medio de ruido de fondo: señales tectónicas de las entrañas de la Tierra, otras provenientes del lejano cosmos, de telemetría biomédica, acústicas lejanas, interfaces neuronales no invasivas, etc. El propósito de este trabajo es presentar la descripción de una plataforma robusta y eficiente para hacer filtraje en tiempo real de señales muy inmersas en ruido (bastante débiles) y de naturaleza muy diferente. La estrategia propuesta se basa en dos principios: el modelado de las señales de los fenómenos físicos mediante procesos caóticos y la aplicación de estrategias de filtraje basadas en la teoría de sistemas dinámicos no lineales. Tomando como caso de estudio señales sísmicas, señales de electrocardiogramas fetales, señales de tipo voz y señales de interferencias de radiofrecuencia, este trabajo experimental muestra que la metodología es eficiente (error cuadrático medio menor al 1 %) y robusta (la estructura de filtraje, basada en filtro de Kalman, es invariante ante diferentes señales fenomenológicas). La metodología presentada resulta ser muy atractiva para aplicaciones prácticas para la detección de señales débiles en tiempo real por su alta precisión de filtraje con una mínima complejidad computacional y tiempos de procesamiento muy cortos.
Abstract 308 | PDF Downloads 239 PDF (English) Downloads 38 HTML Downloads 29 HTML (English) Downloads 15 EPUB Downloads 8 XML Downloads 0

Citas

[1] Y. Li, B. Yang, Y. Yuan, X. Zhao, and H. Lin, “Ability to detect weak effective seismic signals by utilizing chaotic vibrator system,” Chinese Science Bulletin, vol. 51, pp. 3010–3017, 2006. [Online]. Available: https://doi.org/10.1007/s11434-006-2191-0
[2] Y. Li, B. J. Yang, J. Badal, X. P. Zhao, H. B. Lin, and R. L. Li, “Chaotic system detection of weak seismic signals,” Geophysical Journal International, vol. 178, no. 3, pp. 1493–1522, 2009. [Online]. Available: https://doi.org/10.1111/j.1365-246X.2009.04232.x
[3] J. Shu-Yao, Y. Fei, C. Ke-Yu, and C. En, “Application of stochastic resonance technology in underwater acoustic weak signal detection,” in OCEANS 2016 - Shanghai, April 2016, pp. 1–5. [Online]. Available: https://doi.org/10.1109/OCEANSAP.2016.7485567
[4] S. L. Joshi, R. A. Vatti, and R. V. Tornekar, “A survey on ecg signal denoising techniques,” in 2013 International Conference on Communication Systems and Network Technologies, April 2013, pp. 60–64. [Online]. Available: https://doi.org/10.1109/CSNT.2013.22
[5] H. Li, R. Wang, S. Cao, Y. Chen, N. Tian, and X. Chen, “Weak signal detection using multiscale morphology in microseismic monitoring,” Journal of Applied Geophysics, vol. 133, pp. 39–49, 2016. [Online]. Available: https://doi.org/10.1016/j.jappgeo.2016.07.015
[6] R. Han, J. Li, G. Cui, X. Wang, W. Wang, and X. Li, “Seismic signal detection algorithm based on gs transform filtering and emd denoising,” in 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Dec 2018, pp. 1213–1217. [Online]. Available: https://doi.org/10.1109/CompComm.2018.8781035
[7] H. Van Trees, Detection, Estimation, and Modulation Theory: Detection, Estimation, and Linear Modulation Theory, 2001. [Online]. Available: https://doi.org/10.1002/0471221082
[8] A. Jazwinski, Stochastic Processes and Filtering Theory. Academic Press, 1970. [Online]. Available: https://bit.ly/34iDlnz
[9] R. L. Stratonovich, Topics of the Theory of Random Noise, 1967. [Online]. Available: https://bit.ly/2PcK2DB
[10] W.-R. Wu and A. Kundu, “Image estimation using fast modified reduced update kalman filter,” IEEE Transactions on Signal Processing, vol. 40, no. 4, pp. 915–926, April 1992. [Online]. Available: https://doi.org/10.1109/78.127963
[11] R. Parseh, K. Kansanen, and D. Slock, “Distortion outage analysis for joint space-time coding and kalman filtering,” IEEE Transactions on Signal Processing, vol. 65, no. 9, pp. 2291–2305, May 2017. [Online]. Available: https://doi.org/10.1109/TSP.2017.2655493
[12] M. de Sousa Vieira, “Chaos and synchronized chaos in an earthquake model,” Kontorovich y Ramos-Alarcón / Filtraje robusto de señales débiles de fenómenos reales 119 Physical Review Letters, vol. 82, pp. 201– 204, Jan 1999. [Online]. Available: http://doi.org/10.1103/PhysRevLett.82.201
[13] G. Kolumban, M. P. Kennedy, and L. O. Chua, “The role of synchronization in digital communications using chaos. i . fundamentals of digital communications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 44, no. 10, pp. 927–936, Oct 1997. [Online]. Available: https://doi.org/10.1109/81.633882
[14] G. Kaddoum, “Design and performance analysis of a multiuser ofdm based differential chaos shift keying communication system,” IEEE Transactions on Communications, vol. 64, no. 1, pp. 249–260, Jan 2016. [Online]. Available: https://doi.org/10.1109/TCOMM.2015.2502259
[15] N. V. Thakor, “Chaos in the heart: signals and models,” in Proceedings of the 1998 2nd International Conference Biomedical Engineering Days, May 1998, pp. 11–18. [Online]. Available: https://doi.org/10.1109/IBED.1998.710541
[16] P. J. García-Laencina and G. Rodríguez-Bermudez, “Analysis of eeg signals using nonlinear dynamics and chaos: A review,” Applied Mathematics & Information Sciences, pp. 2309–2321, 2015. [Online]. Available: https://bit.ly/2Pg2NGa
[17] V. S. Anishchenko, V. Astakhov, A. Neiman, T. Vadivasova, and L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems. Springer-Verlag Berlin Heidelberg, 2007. [Online]. Available: http://doi.org/10.1007/978-3-540-38168-6
[18] V. Kontorovich and Z. Lovtchikova, “Nonlinear filtering of chaos for real time applications,” in Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering, K. Kyamakya, W. A. Halang, W. Mathis, J. C. Chedjou, and Z. Li, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 41–59. [Online]. Available: https://doi.org/10.1007/978-3-642-37781-5_3
[19] V. Kontorovich, Z. Lovtchikova, and F. Ramos-Alarcon, Nonlinear Filtering of Weak Chaotic Signals, 2017. [Online]. Available: http://doi.org/10.5772/intechopen.70717
[20] E. Nikulchev, “Simulation of robust chaotic signal with given properties,” Advanced Studies in Theoretical Physics, vol. 8, no. 21, pp. 939–944, 2014. [Online]. Available: http://dx.doi.org/10.12988/astp.2014.48106
[21] L. Ljung, System Identification: Theory for the user. Prentice Hall PTR, 1999. [Online]. Available: https://bit.ly/2YIDEaj
[22] V. Pugachev and I. Sinitsyn, Stochastic Differential systems Analysis and Filtering. John Wiley & Sons, 1987. [Online]. Available: https://bit.ly/2qKkrZc
[23] M. Banbrook, S. McLaughlin, and I. Mann, “Speech characterization and synthesis by nonlinear methods,” IEEE Transactions on Speech and Audio Processing, vol. 7, no. 1, pp. 1–17, Jan 1999. [Online]. Available: https://doi.org/10.1109/89.736326
[24] D. Ilitzky Arditti, A. Alcocer Ochoa, V. Kontorovich Mazover, and F. Ramos Alarcon Barroso, “Adaptive mitigation of platformgenerated radio-frequency interference,” Patent US 2015.0 051 880A1, 2015. [Online]. Available: https://bit.ly/2Pesh6G
[25] Physionet. (2019) Physiobank atm. [Online]. Available: https://bit.ly/2LMxcKf
[26] F. R. Rofooei, A. Mobarake, and G. Ahmadi, “Generation of artificial earthquake records with a nonstationary kanai-tajimi model,” Engineering Structures, vol. 23, no. 7, pp. 827–837, 2001. [Online]. Available: https://doi.org/10.1016/S0141-0296(00)00093-6
[27] E. X. Alban, M. E. Magana, H. G. Skinner, and K. P. Slattery, “Statistical modeling of the interference noise generated by computing platforms,” IEEE Transactions on Electromagnetic Compatibility, vol. 54, no. 3, pp. 574–584, June 2012. [Online]. Available: https://doi.org/10.1109/TEMC.2011.2164255