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Abstract Resumen
In a large number of real-life scenarios it is required
to process desired signals that are significantly im-
mersed into background noise: tectonic signals from
the entrails of the earth, signals coming from the
far away cosmos, biometric telemetry signals, distant
acoustic signals, noninvasive neural interfaces and
so on. The purpose of this paper is to present the
description of a robust and efficient platform for the
real time filtering of signals deeply immersed in noise
(rather weak signals) with rather different nature.
The proposed strategy is based on two principles:
the chaotic modelling of the signals describing the
physical phenomena and the application of filtering
strategies based on the theory of non-linear dynamical
systems. Considering as a study case seismic signals,
fetal electrocardiogram signals, voice-like signals and
radio frequency interference signals, this experimental
work shows that the proposed methodology is effi-
cient (with mean squared error values less than 1%)
and robust (the filtering structure remains the same
although the phenomenological signals are drastically
different). It turns out that the presented method-
ology is very attractive for the real time detection
of weak signals in practical applications because it
offers a high filtering precision with a minimum com-
putational complexity and short processing times.

En un gran número de escenarios de la vida real se
requiere procesar señales de interés que se encuentran
muy inmersas en medio de ruido de fondo: señales tec-
tónicas de las entrañas de la Tierra, otras provenientes
del lejano cosmos, de telemetría biomédica, acústicas
lejanas, interfaces neuronales no invasivas, etc. El
propósito de este trabajo es presentar la descripción
de una plataforma robusta y eficiente para hacer fil-
traje en tiempo real de señales muy inmersas en ruido
(bastante débiles) y de naturaleza muy diferente. La
estrategia propuesta se basa en dos principios: el mo-
delado de las señales de los fenómenos físicos mediante
procesos caóticos y la aplicación de estrategias de fil-
traje basadas en la teoría de sistemas dinámicos no
lineales. Tomando como caso de estudio señales sísmi-
cas, señales de electrocardiogramas fetales, señales de
tipo voz y señales de interferencias de radiofrecuencia,
este trabajo experimental muestra que la metodología
es eficiente (error cuadrático medio menor al 1 %)
y robusta (la estructura de filtraje, basada en fil-
tro de Kalman, es invariante ante diferentes señales
fenomenológicas). La metodología presentada resulta
ser muy atractiva para aplicaciones prácticas para
la detección de señales débiles en tiempo real por su
alta precisión de filtraje con una mínima compleji-
dad computacional y tiempos de procesamiento muy
cortos.

Keywords: Chaos, Nonlinear Filtering, Dynamic Sys-
tems, Kalman Filter, Weak signals, Real Signals.
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1. Introduction

Signal processing is basic for many areas of science and
engineering. One of the fundamental stages for any
signal processing algorithm is filtering, in other words,
eliminating (filtering) background noise that accompa-
nies the signal under study, prior to the corresponding
signal processing.

There are various strategies for signal filtering, to
counteract the effects of noise. The conventional fil-
tering methodologies (based on statistical processing)
have proven to be very rather effective when the signal-
to-noise ratio (SNR) is greater than or equal to 1, i.e.
SNR ≥ 1, or equivalently SNR ≥ 0 dB if it is expressed
in decibels (namely, the magnitude of the noise less
than or equal to the magnitude of the signal of inter-
est).

In many practical applications, signals with noise
are processed when the magnitude of the latter is
greater than the magnitude of the signal of interest,
i.e., SNR < 1. In order to filter signals in these situa-
tions, either conventional strategies have been adapted
or novel methodologies have been created (based on
iterative procedures, wavelets, etc.). The cost of suc-
cessfully filtering signals under these conditions is that
real time processing is slightly affected.

The filtering process is a great challenge when it is
required to detect very weak signals (magnitude of the
noise much greater than the magnitude of the desired
signal, in other words, SNR « 1 or equivalently SNR
« 0 dB), such as signals from distant solar systems,
fetal cardiac activity, small seisms precursors of earth-
quakes, voice signals immerse in background noise,
information signals of radiofrequency, noninvasive neu-
ral interfaces, among others. The issue of detecting
weak signals is not really new, and it is possible to find
a great number of publications (see [1–6] for citing
only some references) that address this issue using
various methodologies and for different phenomena.
Techniques ranging from different filtering schemes
(adaptive, time-frequency, FIR, IIR, among others),
fuzzy logic, chaotic systems, stochastic resonance, to
different decomposition strategies (empirical mode,
wavelets, orthogonal signals, among others), are em-
ployed. The novelty for the case of the present work is
the application of chaotic signals as models of real phe-
nomena, based on the theory of deterministic nonlinear
dynamic systems.

With a history of more than 50 years, the theory
of dynamic systems [7–9] is one of the pillars of many
scientific areas such as physics, automatic control, com-
munications, etcetera; in particular, it is very relevant
for filtering the famous Kalman filter (proposed by
Rudolph E. Kalman in 1960), which enables a very
precise filtering considering that the desired signal is a
linear dynamic system under the influence of additive
white Gaussian noise (AGWN), and from its invention

until today there is a multitude of practical applica-
tions, both recent and old (for instance, [10,11]).

How to achieve, based on the theory of nonlinear
dynamic systems, an effective filtering strategy for
weak signals from entirely different physical phenom-
ena? One of the options that is explored in this work
is modeling the phenomenological signals as signals
generated by chaotic attractors, i.e., by nonlinear but
deterministic dynamic systems. In this case the appli-
cation of the concept of dynamic systems enables two
very useful things: modeling real signals as formally
deterministic processes, and applying all results about
filtering based on the theory of dynamic systems.

Using chaotic models for real signals results origi-
nal and rather effective, as shown later, even though
the modeling of real phenomena by means of chaotic
signals have been used during more than 50 years in
areas such as seismology [1,2,12], statistical commu-
nication theory [13,14], biomedical telemetry [15,16],
processing of submarine signals [3], and also in many
areas related to applied physics [17].

This work presents an effective filtering (whose the-
oretical aspects were developed in [18,19]) in the sense
of a high precision in terms of very small values of the
normalized mean square error (NMSE < 1 %). The
normalization of the mean square error (MSE) is con-
sidered related to the variance of the phenomenological
signal. On the other hand, filtering is also robust in
the sense that, for input signals coming from different
physical phenomena, both the structure and the preci-
sion (values of the NMSE) of the filter are practically
invariant.

Chaotic modeling is very useful because nearly all
algorithms of quasi-optimal filtering are characterized
by having a high precision (very small value of the
NMSE), and a very low computational complexity.
Theoretical details and demonstration of these prop-
erties were developed in [18,19], where the interested
reader may review them. This work applies and ex-
tends to the practical field the nonlinear filtering ideas
(published in [19]), presenting only the experimental
details of physical scenarios with different phenomenol-
ogy, specifically seismic signals, cardiac signals (ECG),
vocal tract signals and radiofrequency interfering sig-
nals.

2. Materials and methods

The development of this work is centered in two basic
elements. On one side, previously developed methods
that provide a rigorous theoretical foundation and, on
the other, MatLab code programming to create a test
bench. The MatLab code is developed from the filter-
ing equations described later. In the theoretical aspect,
chaotic signals are employed both for filtering nonlinear
dynamic systems and for modeling phenomenological
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signals. Since the idea is to obtain algorithms that
may be implemented on a computational platform, it
is important to establish the complexity of the non-
linear dynamic filtering in terms of operations and
computational calculations.

2.1. Chaotic filtering and modeling

A chaotic process is defined from a set of ordinary dif-
ferential equations and their corresponding parameters,
i.e., is a deterministic process [17]. In the phase space,
a chaotic process shapes an orbital trajectory, with the
peculiar characteristic that none of all possible trajec-
tories passes twice for exactly the same place [17]. In
addition, a chaotic process is sensitive to changes in
the initial conditions, i.e., two realizations of the same
chaotic process whose initial conditions differ in an
arbitrarily small value, are completely uncorrelated in
the medium and long term [17].

Although being deterministic, a chaotic process
generates realizations of processes that are described
as stochastic, and it is precisely this deterministic-
stochastic nature what is exploited to generate filtering
strategies (with deterministic equations) and model
physical processes (with stochastic realizations).

A vector chaotic process x(t) may be generated by
means of the following ordinary differential equation
(ODE):

ẋ = F(x, t) (1)
with initial condition x(t0) = x0; F(·) is a time-

varying vector function (represents the chaotic equa-
tions). In this case, F(x, t) is considered taking as
example the chaotic attractors of Rossler, Lorenz and
Chua:

Rossler

xk+1 = xk + Ts(−yk − zk)
yk+1 = yk + Ts(xk − 0.2yk)

zk+1 = zk + Ts(0.2− zk(5.7− xk))
(2)

Lorenz

xk+1 = xk + Ts(10(xk − yk))
yk+1 = yk + Ts(28xk − yk + xk · zk)

zk+1 = zk + Ts(−8
3zk + xk · yk)

(3)

Chua

xk+1 = xk+1 + Ts[9.205(yk − U(xk))]
yk+1 = yk+1 + Ts[xk − yk + z3]

zk+1 = zk+1 + Ts[−14.3yk]
(4)

where U(xk) = m1xk+ 1
2 (m0−m1)[|xk+1|−|x1−1|,

m0 = − 1
7 , m1 = 2

7 and TS is the sampling time. The
discrete Kalman filter (described a little further) is
the filtering algorithm used, for this reason, (2)-(4) are
presented in discrete form.

The initial conditions of the signal to be processed
are unknown in the filtering block; this produces uncer-
tainty (divergence) effects that can be mitigated includ-
ing an additive «process noise» in Equation (1). Thus,
the ODE becomes a stochastic differential equation
(SDE), which gives rise to an n-dimensional Markovian
stochastic process:

ẋ = f(x(t)) + εξ(t) (5)

where f(x(t)) is analogous to F(x, t) in (1). The
influence of an external weak source of white noise is
denoted as ξ(t); the intensities of the noise are given
in form of the matrix ε = [εij ]nxn.

When using the SDE (5) as a model for the chaos,
the first strategy that immediately comes to mind is
the nonlinear filtering of chaotic signals developed rig-
orously in [18, 19], which is based on the Stratonovich-
Kushner equations (SKE) [7, 8] that can be used to
describe the dynamic equation of the a posteriori prob-
ability density function (PDF) of the chaos x(t). Note
that the time evolution of the a posteriori PDF for x(t)
is completely characterized by the SKE; however it
does not have an exact analytical solution. One of the
few exceptions is using a linear SDE, in other words,
the well-known Kalman filter algorithm. Precisely, this
is the reason why the nonlinear filtering algorithms
are usually simplified making them quasi-optimal, or
even quasi-linear.

The following question may arise: what are the ad-
vantages offered by the chaotic modeling for filtering
weak signals? It turns out that the solution of the SKE
for the dynamic ODE of the chaos (1), exhibits singu-
larity properties when the solution is practically tuned
with the deterministic chaos in (1), independently of
the value of the SNR [18].

An important set of quasi-linear filtering algorithms
apply the local Gaussian approximation (LGA) for the
a posteriori PDF [8,19], which results suitable for real
time applications. Some of these algorithms are:

• Extended Kalman filter (EKF)

• Unscented Kalman filter (UKF)

• Quadrature Kalman filter (QKF)

• Gauss-Hermite quadrature filter (GHF)

• Conditionally optimal filter among others
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Note that the difference between the algorithms
based on the LGA, depends only on how the location
of the instantaneous estimate of x(t) is chosen. For the
case of a high filtering precision, all algorithms that
apply LGA [18] may be successfully approximated by
means of the EKF, because the correct value of the
filtering process and the reference point for the appli-
cation of the Gaussian approximation are obviously
very close.

Given a certain SNR, all these filtering algorithms
have different precision and a completely different com-
putational complexity, for a pre-established filtering
quality. When selecting any specific filtering algorithm
for a particular scenario, it is necessary to consider the
NMSE in conjunction with the computational com-
plexity, as possible criteria.

2.2. Computational complexity

In real world applications, the computational complex-
ity of the quasi-linear algorithms is essential. For the
particular case of the EKF, UKF, QKF and GHF algo-
rithms, the computational complexity may be analyzed
in terms of additions and multiplications, Cholesky
decomposition, nonlinear propagation and Jacobian
calculation. The evaluation with respect to these terms
is shown in Table 1.

Table 1. Computational complexity

EKF UKF GHF QKF
Additions 8 50 25 25

Multiplications 15 77 33 40
Cholesky 1 2 2 2decomposition
Nonlinear 0 15 21 6Propagation

Jacobian calculation 1 0 0 0

It can be noted that the UKF exhibits a greater
complexity, while the EKF is the less complex. The
EKF might degrade due to the Jacobian calculation
(evaluation of the partial derivatives), if the equations
of the attractor are sophisticated. However, for the
models of formulas (2)-(4), the filtering structure based
on the EKF is the best choice. As will be shown later,
when detecting real weak signals, a rather acceptable
fidelity may be achieved in all practical cases using a
filtering structure based on the EKF, which internally
uses chaotic models of the type given by (2)-(4).

As an alternative to the quasi-linear algorithms of
the EKF, where the linearization is updated instanta-
neously, a robust and low computational complexity
solution may be searched for using a «fixed lineariza-
tion» (with a linearization matrix predefined according
to the specific problem under study) instead of instan-
taneous linearization. In fact, this means that the
standard Kalman filter (SKF) [7–11] would be used

instead of the EKF, and therefore, even though there
would be a lower complexity, there would also be losses
in the filtering precision. Nevertheless, it should be
taken into account that the LGA of the a posteriori
PDF assumes that all the components of the model
are almost linear, and therefore the losses in precision
may be reasonable.

Note that when the input data are variant, it is very
common that the quasi-optimal filtering algorithms
apply linearization strategies.

2.3. Multi-moment processing

To improve the filtering fidelity, it is required to take
advantage of all the available information in the signal
being processed. For this purpose, it makes sense to
incorporate in the filtering methodology, applying the
SKE equations, additional information (in different
sequential time instants) of the received composite
signal; in other words, it should be considered informa-
tion in the form of blocks (at different time instants,
i.e., multi-moment processing). The multi-moment al-
gorithms are implemented through the generalization
of the SKE using multi-moment data.

The multi-moment filtering algorithms are slightly
practical for real time implementations, since the delay
due to the processing of samples from different time
instants is significant. To reach a compromise between
complexity and increase of filtering precision, it is rea-
sonable to consider processing only two adjacent sam-
ples. This processing is known as two-moments regime
(2MM), which is a special case of the multi-moment
filtering and may be reviewed in detail in [18,19].

In the 2MM regime, two samples coming from two
time instants (not instantaneous processing) are pro-
cessed during every filtering cycle, and consequently
the correlation coefficient between the two adjacent
samples (denoted as ρ) is a design parameter. The
advantage of considering the 2MM regime, is that
the benefits of the multi-moment processing can be
obtained, practically without significant delays.

In the one-moment (1MM) regime, in which one
sample from a single time instant is processed during
each cycle (instantaneous processing), there is no in-
crease in the filtering precision, and this is precisely
the type of processing that characterizes the EKF and
its variants previously listed.

2.4. Simulation model

The practical implementation of the proposed design
methodology, was carried out developing a simulation
test bench based on MatLab.

The methodology is constituted by two elements:

1) A nonlinear dynamic filtering structure based on
the Kalman filter (EKF or SKF according to the
case).
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2) Appropriate modeling of the real weak signal,
congruent with the filtering structure to be used
(EKF or SKF).

A discrete version of the Kalman filter is used for
simulation by means of MatLab. Such discrete version
is now described. The state dynamics in a discrete
system is given by:

xk+1 = f(xk) + εk

yk = s(xk) + n0ks

(6)

where xk represents the state of the system, and yk

is a measurement of the state of the system, {n0k} and
{εk} are independent Gaussian white noise processes
with zero mean and covariance matrices

E[n0kn
T
0k] = N0k and E[εkε

T
k ] = Qk

respectively, Qk denotes process noise and measur-
ing noise. The prediction and correction cycles of the
Kalman filter are given by:

Prediction

{
x̂−

k+1 = f(x+
k )

P−
k = AkP

+
k A

T
k +Qk

Correction


Gk = P−

k H
T
k [HkP

−
k H

T
k +N0k]−1

x̂+
k = x̂−

k +Gk[yk − s(x−
k )]

P+
k = P−

k +GkHkP
−
k

(7)

where Gk is the Kalman gain, x̂−
k is the a priori

estimate of the state at the k-th update cycle, x̂+
k is

the a posteriori estimate of the state at the k-th up-
date cycle, P−

k , P+
k are, respectively, the a priori and

the a posteriori estimations of the covariance matrices
at the k-th stage, Ak is the linearization matrix (or
state-transition matrix) and Hk is the matrix that in-
dicates the relationship between the measurement and
the state vector at the k-th cycle, assuming absence of
noise. For the case of the SKF, Ak is a fixed matrix in
every cycle, while for the EKF the matrix is updated
in each cycle by means of the Jacobian calculation:

Ak = ∂f(xk)
∂xk

(8)

When using the EKF, the structure of the filter is
given by (7); (2), (3) or (4) are used as the function
f(xk), and the linearization is given by (8). Here, the
real weak signal is modeled using any of the chaotic
processes (2)-(4), i.e., it is analyzed which of the com-
ponents (x, y or z) of (2), (3) or (4) is the most ap-
propriate to be used as model. For this purpose, the
sampling time (Ts) of the discrete chaotic equations
is first modified, until reaching a coincidence between
the time variations of the component of the selected

chaotic attractor and the real signal (make the time
scales as close as possible). Second, the desired signal
is normalized with respect to the mean and the vari-
ance of the component of the attractor. It has been
demonstrated in [18, 19], that the x component of the
three chaotic attractors (2)-(4) is the more appropriate
to model experimental signals. After carrying out a
similar modeling analysis, it was found that the same
criterion is applicable for the phenomenological signals
of this work.

When using the SKF, the matrix Ak is fixed and
the modeling of the signal should be reflected precisely
in Ak. With this purpose, the MatLab System Identi-
fication Toolbox (SIT) [20] is used. Such tool is based
on the theory of systems identification [21]. To identify
the real signal (seismic, ECG, voice-type, RFI), the
MatLab SIT analyzes its spectral properties, and gives
a constant matrix as the model.

The experimental part of the next section shows
that it is possible to use such matrix precisely as a
fixed linearization matrix in the filtering structure
given by (7), which really is only an approximation of
the instantaneous linearization procedure required for
the quasi-optimal filtering when the LGA is used.

To make a fair comparison with the EKF of dimen-
sion 3 according to formulas (2)-(4), a tridimensional
SKF is designed. The «ident» command is used to
obtain matrix Ak by means of the MatLab SIT. The
identification (of the signal without noise) is made se-
lecting the option «state space models» [7, 22] for the
three-dimensional case. The program provides three
estimation options (subspace method, regularized re-
duction and minimization of the prediction error), and
at the end indicates the confidence percentage of each
option. It was found experimentally that the option
of minimization of the prediction error offers the best
confidence percentage, for the estimation of the matrix.

In the methodology proposed here, the systems
identification is precisely a modeling of the real signal.
The identification is made for a vector (the largest
possible) of the real signal (without noise). Assuming
that the signals under study are stationary, the system
identification matrix may be considered as the fixed
linearization matrix Ak and, therefore, be a signal
model for any other vector of the same phenomeno-
logical signal. When using the identification matrix in
the structure of the SKF, a processing with a priori
information and experimental data is achieved.

The 2MM regime is employed to achieve a greater
filtering fidelity. As it is commented in [19], the quasi-
optimal solutions (in this case for multi-moment algo-
rithms) are based in some heuristic that may incorpo-
rate previous knowledge and/or structures. If this is
the case, the 2MM regime utilized in this work has the
form:
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x̂−
k+1 = f(x̂+

k ) 2x̂
−
k+1 = f(2x̂

+
k )

P−
k = AkP

+
k A

T
k +Qk 2P

−
k =2 AkP

+
k (1− ρ2)2A

T
k +Qk

Gk = P−
k H

T
k [HkP

−
k H

T
k +N0k]−1

2Gk = 2P
−
k 2H

T
k [2Hk2P

−
k 2H

T
k +N0k]−1

x̂+
k = x̂−

k +Gk[yk − s(x−
k )] 2x̂

+
k =2 x̂

−
k +2 Gk[yk − s(2x

−
k )]

P+
k = P−

k +GkHkP
−
k

(9)

where the subscript 2 of the left side of each variable
denotes a 2MM variable. For this filtering algorithm,
the only difference between the left and right columns
of the structure given by (7), is that the last operation
of the correction cycle does not exist; both columns
operate in parallel. In (7), the output of the filter is
x̂+

k , while in (9) is 2x̂
−
k+1. In the 2MM regime, in the

column of the right side in the last operation of the
prediction cycle, the a priori estimate of the covariance
matrix is calculated taking into account the correla-
tion coefficient ρ of the two samples. Observe that the
structure (9) may operate both for the EKF and the
SKF, following the observations described in previous
paragraphs.

Next section experimentally shows the efficiency of
the filtering proposed here, considering signals of signif-
icantly different nature, such as, seismic signals, fetal
electrocardiographic (FECG) signals, voice-type sig-
nals and radiofrequency interfering signals (RFI). Such
signals may be considered chaotic [1, 2, 12,15,23,24]

3. Results and discussion

The following results show the filtering by means of
SKF and EKF, both for the 1MM and 2MM regimes.
In the 2MM regime, the ρ parameter determines a
different fidelity in the filtering. If ρ = 0, this corre-
sponds to the 1MM regime (without increase in the
fidelity). If ρ = 1, see formula (9), this corresponds to
a singularity condition with a covariance matrix equal
to zero (fidelity tends to +∞)). It was chosen ρ = 0.85
for a homogeneous analysis of the results.

The figures show the overlapped curves of the orig-
inal signal (without noise), and the signal after being

filtered with the filtering scheme and the corresponding
regime indicated in each figure. The figures only show a
threshold case of weak signal when the SNR = ˘3dB.
Manipulating N0 to analyze different thresholds of
weak signals (SNR ≤ 0dB), Tables 2-5 show the per-
formance of the SKF and EKF under the 1MM and
2MM regimes, in terms of the NMSE (described in the
paragraphs of the introduction). The average times (in
seconds) required to process 5000 samples for each of
the phenomena under study and their corresponding
filtering, are also shown.

For both the SKF and EKF, an imperfect modeling
of the phenomenological signal is carried out (there is
a certain degree of uncertainty in the initial conditions
for the filtering); as a consequence, a noise value of
weak process, see Q in (7) and (9), should be included
in the filtering structure (value of Q indicated in tables
2-5).

No results of the SKF are presented for the seis-
mic signals, since it was not possible to obtain the
corresponding fixed linearization matrix (systems iden-
tification matrix) because such signals have a very
limited duration for an adequate spectral analysis by
means of the SIT.

3.1. Fetal electrocardiographic (FECG) signals

The experimental data were obtained from the Phy-
sioNet [25] database. The signal for this experiment
corresponds to the heart of a fetal product, at week 36
of pregnancy. For a SNR = ˘3dB, Figure 1 shows the
original signal and the signal filtered using the EKF
1MM with the x component of Rossler as model. Table
2 shows the complete results.

Figure 1. Signals in experiment 1
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Table 2. Results of the NMSE for experiment 1

SNR 0 dB –3 dB –10 dB Procesamiento time
SKF Q = 0.04 (with linearization matrix Ak)

1MM 0.0025 0.0037 0.0078 0.43 s
2MM 0.0021 0.0032 0.0065 0.89 s

EKF Rossler x Q = 0.21
1MM 0.0026 0.0040 0.0098 1.825 s
2MM 0.0023 0.0036 0.0079 3.503 s

EKF Lorenz x Q = 0.42
1MM 0.0029 0.0042 0.010 1.782 s
2MM 0.0023 0.0034 0.0083 3.59 s

EKF Chua x Q = 0.075
1MM 0.0034 0.0053 0.015 1.812 s
2MM 0.0026 0.0042 0.012 3.61 s

3.2. Experiment 2. Voice-type signals

Sustained sounds of vowels (vowel «o») were used
for this experiment. This type of signals are utilized
in voice synthesis procedures [23]. Figure 2 shows
with solid line the sustained sound of the vowel «o»
(recorded during 5 seconds at 22050 Hz), and with

dotted line the signal filtered using the SKF 2MM
with its matrix evaluated by means of SIT. The results
(very similar to the previous experiment) are shown in
Table 3. For this experiment none of the components
of the Lorenz attractor resulted adequate for modeling
voice-type signals.

Figure 2. Signals in experiment 2

Table 3. Results of the NMSE for experiment 2

SNR 0 dB –3 dB –10 dB Processing time
SKF Q = 0.0081 (with linearization matrix Ak)

1MM 0.0025 0.0037 0.0079 0.47 s
2MM 0.0015 0.0024 0.0053 0.95 s

EKF Rossler x Q = 0.23
1MM 0.0029 0.0044 0.0124 1.792 s
2MM 0.0027 0.0039 0.011 3.611 s

EKF Chua x Q = 0.76
1MM 0.0031 0.0048 0.0137 1.81 s
2MM 0.0025 0.0043 0.0130 3.58 s
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3.3. Experiment 3. Seismic signals

A MatLab simulator based on the seismic models re-
ported in [26] was used for this experiment. For an
SNR = ˘3dB, Figure 3 shows a seismic signal and

its filtered version obtained using the EKF 2MM with
the x component of the Rossler model. The complete
results are shown in Table 4. For the seismic signal
it was not possible to obtain the linearization matrix,
and consequently the SKF is not reported for this case.

Figure 3. Signals in experiment 3

Table 4. Results of the NMSE for experiment 3

SNR 0 dB -3 dB -10 dB Processing time
EKF Rossler x Q = 0.35

1MM 0.0048 0.0074 0.0178 1.79 s
2MM 0.0047 0.0073 0.0135 3.53 s

EKF Lorenz x Q = 0.135
1MM 0.0058 0.0093 0.0245 1.807 s
2MM 0.0054 0.0081 0.0187 3.62 s

EKF Chua x Q = 0.135
1MM 0.0057 0.0095 0.029 1.816 s
2MM 0.0051 0.0084 0.023 3.65 s

3.4. Experiment 4: RFI signals

This experiment considers the RFI generated by com-
puter equipment [24,27], which affects the transmission
of desired information signals. For an SNR = ˘3dB,

Figure 4 shows the RFI signal and its filtered version
obtained using the SKF 1MM, with the linearization
matrix evaluated by means of the SIT. Table 5 shows
the complete results.

Figure 4. Signals in experiment 4.
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Table 5. Results of the NMSE for experiment 4

SNR 0 dB -3 dB -10 dB Processing time
SKF Q = 0.02 (with linearization matrix Ak)

1MM 0.0018 0.003 0.0098 0.51 s
2MM 0.0015 0.0025 0.0085 0.92 s

EKF Rossler x Q = 0.2
1MM 0.0026 0.005 0.019 1.872 s
2MM 0.0023 0.0036 0.011 3.9 s

EKF Lorenz x Q = 0.6
1MM 0.0023 0.0032 0.04 1.76 s
2MM 0.0016 0.0027 0.0083 3.81 s

EKF Chua x Q = 0.4
1MM 0.0034 0.0053 0.035 1.86 s
2MM 0.0026 0.0042 0.029 3.77 s

From the tables it is observed that the 2MM
method shows a slightly better NMSE. All the fil-
tering methodologies presented are rather effective,
because they are characterized by a very low value
of the NMSE. In the scenario of SNR = ˘10dB (an
extremely weak signal), it is virtually impossible to
visually distinguish (it is not shown in figures due to
space issues) the desired signals from the noise; nev-
ertheless, the NMSE has values around 1 % for the
filtering by means of SKF and EKF, both for the 1MM
and 2MM methodologies.

It should be taken into account that the 2MM
methodology consumes more time, compared to the
1MM methodology, although it is not more than twice
the time. The filtering by means of SKF is (almost 3
times) faster, because there is no linearization process.
The processing times together with the complexity and
the filtering fidelity, should be the selection criteria
to choose the adequate filtering algorithm for each
particular implementation.

The SKF with fixed linearization matrix (mod-
eling the signals of interest by means of a system
identification matrix) shows the best results, which
indicates that for processing with quasi-linear filtering
algorithms, the influence of the spectral properties
of the input data prevails over the influence of the
non-Gaussian statistics. The values of NMSE obtained
in the simulations are very similar for filtering the
different signals, and consequently, it is not really de-
terminant in practice which particular model of chaotic
attractor or linearization matrix (obtained from the
SIT) is applied.

Why does this occur? All the chaotic attractors
that have been employed to model the real signals, gen-
erate chaos as a quasi-deterministic stochastic process.
For this reason, all the aforementioned quasi-optimal

filtering algorithms (including the EKF and its mod-
ifications) which apply the idea of chaotic modeling,
operate in a regime very close to the singularity, i.e.,
the shape of the a posteriori PDF is concentrated
around the a priori PDF of the desired signal, inde-
pendently of the SNR value [18,19], and that precisely
enables obtaining rather low values of the NMSE for
very weak signals (SNR smaller than 0 dB and up to
–10 dB). Therefore, for high fidelity filtering, the linear
term of the Taylor series expansion for the quasi-linear
algorithm [8, 9, 22] is significantly more determinant
than the terms related to the nonlinearities (Jacobian
matrix, etc.), i.e., the linear approximation is sufficient.

4. Conclusions

It has been proposed a simple and robust filtering
structure based on the Kalman filter, for processing
weak signals. This structure enables the incorpora-
tion of the 2MM regime, which improves the filtering
precision.

For non-Gaussian phenomenological signals, de-
pending on the specific scenario, requirements of com-
putational complexity and acceptable error, it may
be employed as model for the real signal either the
EKF using chaotic signals, or the SKF with a fixed
linearization matrix; in other words, the MatLab SIT
may be used to evaluate the systems identification
matrix, which is then used as model of the real signal.
This enables a «significant degree of freedom» for the
design of the filtering block.

The experimental results show great precision in
filtering weak signals for all scenarios considered here,
and given the rather diverse nature of such scenarios,
most likely it may be applied in other scenarios (future
work).
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