Proposal for implantation of a coffee drying greenhouse with parabolic cover and adapted modular structure

Main Article Content

Bryan Briceño-Martínez
Jairo Castillo-Calderón
Rubén Carrión-Jaura
Diego Díaz-Sinche


The present work proposes a greenhouse for coffee drying, constituted by a parabolic solar cover and adapted modular structure. It started with a planimetric survey made using different engineering and architecture software, such as: SolidWorks y Revit Architecture. For the experiment, reverse engineering principles based on an existing structure, were used to develop a modular coupling model, in order to establish interactions between mechanisms and structure. The study demonstrated that the design of the assembly couplings facilitates their mobilization, reduces costs and allows the application of accessible materials for the solar parabolic dryer (marquee). Also, the coffee drying curves in a parabolic type solar dryer and their time are shown in Statgraphics. The result of the model with modular armature couplings was correctly associated with the existing experimental results, allowing to compare the time and efficiency of the coffee drying.
Abstract 507 | PDF (Español (España)) Downloads 553 PDF Downloads 65 HTML (Español (España)) Downloads 75 HTML Downloads 55 EPUB (Español (España)) Downloads 21 EPUB Downloads 7 XML (Español (España)) Downloads 0


[1] ICO, Anuario 2017–2018. International Coffee Organization, 2018. [Online]. Available:
[2] K. Jitjack, S. Thepa, K. Sudaprasert, and P. Namprakai, “Improvement of a rubber drying greenhouse with a parabolic cover and enhanced panels,” Energy and Buildings, vol. 124, pp. 178–193, 2016. [Online]. Available:
[3] C. E. Oliveros-Tascón, C. A. Ramírez-Gómez, and J. R. Sanz-Uribe, “Secador solar de túnel para café pergamino,” Avances Técnicos Cenicafé, pp. 1–8, 2006. [Online]. Available:
[4] M. Kumar, S. K. Sansaniwal, and P. Khatak, “Progress in solar dryers for drying various commodities,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 346–360, 2016. [Online]. Available:
[5] A. Ghazanfari, L. Tabil Jr., and S. Sokhansanj, “Evaluating a solar dryer for in-shell drying of split pistachio nuts,” Drying Technology, vol. 21, no. 7, pp. 1357–1368, 2003. [Online]. Available:
[6] M. E.-A. Slimani, “Etude d’un séchoir solaire agricole muni d’un capteur solaire de type "pv-therm": réalisation d’un prototype et caractérisation,” Ph.D. dissertation, 2017. [Online]. Available:
[7] V. Tomar, G. N. Tiwari, and B. Norton, “Solar dryers for tropical food preservation: Thermophysics of crops, systems and components,” Solar Energy, vol. 154, pp. 2–13, 2017, solar Thermal Heating and Cooling. [Online]. Available:
[8] M. Al-Neama and I. Farkas, “Utilization of solar air collectors for product’s drying processes,” The Journal of Scientific and Engineering Research, vol. 5, no. 2, pp. 40–56, 2018. [Online]. Available:
[9] D. E. Ogheneruona and M. O. L. Yusuf, “Design and fabrication of a direct natural convection solar dryer for tapioca design and fabrication of a direct natural convection solar dryer for tapioca,” Leonardo Electronic Journal of Practices and Technologies, vol. 10, no. 18, pp. 95–104, 2011. [Online]. Available:
[10] A. Tefera, W. Endalew, and B. Fikiru, “Evaluation and demonstration of direct solar potato dryer,” Livestock Research for Rural Development, vol. 25, no. 12, 2013. [Online]. Available:
[11] R. Patil and R. Gawande, “A review on solar tunnel greenhouse drying system,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 196–214, 2016. [Online]. Available:
[12] INEN, NTE INEN 1757 Frutas frescas, limón, requisitos. Norma Técnica Ecuatoriana, 2016. [Online]. Available:
[13] MIDUVI, NEC-11. Energías Renovables. Norma Ecuatoriana de la Construccón, 2011. [Online]. Available:
[14] Dassault Systemes. (2019) SOLIDWORKS. [Online]. Available:
[15] Rendering. (2019) Rendering, rendering 3d, rendering animation. [Online]. Available:
[16] R. García, Curso básico de STATGRAPHICS Version 5.0, 2005. [Online]. Available:
[17] J. A. D. W. A. Beckman, Solar Thermal Power Systems. John Wiley & Sons, Ltd, 2013, ch. 17, pp. 621–634. [Online]. Available:
[18] G. T. Heineman and W. T. Councill, Componentbased Software Engineering: Putting the Pieces Together. ACM Press series, 2001. [Online]. Available:
[19] L. Iribarne, J. M. Troya, and A. Vallecillo, “A trading service for cots components,” The Computer Journal, vol. 47, no. 3, pp. 342–357, 2004. [Online]. Available:
[20] L. Iribarne, J. A. Torres, and A. P. na, “Using computer modeling techniques to design tunnel greenhouse structures,” Computers in Industry, vol. 58, no. 5, pp. 403–415, 2007. [Online]. Available:
[21] S. H. Kong, S. D. Noh, Y.-G. Han, G. Kim, and K. I. Lee, “Internet-based collaboration system: Press-die design process for automobile manufacturer,” The International Journal of Advanced Manufacturing Technology, vol. 20, no. 9, pp. 701–708, Oct. 2002. [Online]. Available:
[22] K. L. Mills and H. Gomaa, “A knowledgebased method for inferring semantic concepts from visual models of system behavior,” ACM Trans. Softw. Eng. Methodol., vol. 9, no. 3, pp. 306–337, Jul. 2000. [Online]. Available:
[23] M. Wirsing, A. Knapp, and S. Balsamo, Radical Innovations of Software and Systems Engineering in the Future. 9th International Workshop, RISSEF 2002, Venice, Italy, October 7-11, 2002, Revised Papers. Springer-Verlag Berlin Heidelberg, 2004. [Online]. Available:
[24] M. Ghazel, A. Toguyéni, and M. Bigand, “An uml approach for the metamodelling of automated production systems for monitoring purpose,” Computers in Industry, vol. 55, no. 3, pp. 283–299, 2004, object-oriented modelling in design and production. [Online]. Available:
[25] Cenicafé, “Secado del café pergamino,” Cenicafé, 2019. [Online]. Available: