
Scientific Paper / Artículo Científico

https://doi.org/10.17163/ings.n24.2020.06
pISSN: 1390-650X / eISSN: 1390-860X

Detection of sudden cardiac death
using the adaptive spectral method on
the T wave: An experimental study on

public databases
Detección de la muerte súbita cardíaca
usando el método espectral adaptativo
sobre la onda T: Estudio experimental

sobre bases de datos públicas
Marco Flores-Calero1,∗,2 , Melisa Pilla-Barroso3

1,∗Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas, Sangolquí,
Ecuador. Corresponding author ): mjflores@espe.edu.ec. http://orcid.org/0000-0001-7507-3325

2Departamento de Sistemas Inteligentes, Tecnología I&H, Latacunga, Cotopaxi, Ecuador.
3Profesional en libre ejercicio, Quito, Ecuador. http://orcid.org/0000-0002-1441-1236

Received: 06-02-2020, accepted after review: 21-05-2020
Suggested citation: Flores-Calero, M. and Pilla-Barroso, M. (2020). «Detection of sudden cardiac death using the
adaptive spectral method on the T wave: An experimental study on public databases». Ingenius. N.◦ 24, (july-december).
pp. 59-67. doi: https://doi.org/10.17163/ings.n24.2020.06.

Abstract Resumen
T-wave alternans (TWA) analysis is one of the main
techniques for determining whether an individual
is at risk of sudden cardiac death (SCD). Among
the existing methods for determining TWA is the
adaptive spectral method (SM-Adaptive), which uses
time-frequency distributions (TFD) for the analysis.
The objective of the study is to apply the method on
main public databases in order to detect the presence
or absence of alternations, and to obtain quality pa-
rameters of the aforementioned method. The method
was tested on synthetic signals, 90 signals without
TWA and 450 with TWA; on the other hand, 10 sig-
nals from Physionet’s TWADB database belonging
to healthy patients and 26 signals from patients with
risk factors associated to SCD were used. Tests with
synthetic signals showed a sensitivity of 94.89%, speci-
ficity of 92.22% and accuracy of 94.44%. As for the
tests in the database, the method exhibits an accu-
racy of 80.56%, which indicates that the SM-Adaptive
method enables detecting TWA with an acceptable
accuracy and, in addition, it shows greater robustness
against noise and stationary data.

El análisis de la alternancia de la onda T (TWA,
T-wave alternants) constituye una de las principales
técnicas para determinar la presencia del síndrome
de muerte súbita cardíaca (MSC). Entre los méto-
dos existentes para determinar TWA se encuentra
el método espectral adaptativo (SM-Adaptativo), el
cual utiliza distribuciones en tiempo-frecuencia (TFD,
time-frecuency distribution) para el análisis. El ob-
jetivo del estudio es aplicar este método sobre las
principales bases de datos públicas con el fin de detec-
tar la presencia o ausencia de alternancias y obtener
parámetros de calidad del método en mención. El
método fue probado en señales sintéticas, 90 señales
sin TWA y 450 con TWA; por otro lado, se utilizaron
10 señales de la base de datos TWADB de Physionet
pertenecientes a pacientes sanos y 26 señales de pa-
cientes con factores de riesgo asociados a la MSC.
En las pruebas con señales sintéticas se obtuvo una
sensibilidad de 94,89 %, especificidad de 92,22 % y
exactitud de 94,44 %. En cuanto a las pruebas en la
base de datos el método presenta una exactitud del
80,56 %, lo que indica que el método SM-Adaptativo
permite detectar TWA con una exactitud aceptable,
además, que presenta mayor robustez frente a ruido
y a la estacionariedad de datos.

Keywords: ECG, sudden cardiac death, T-wave al-
ternans, SM-Adaptive.
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1. Introduction

The sudden cardiac death (SCD) is an event that
causes the death in a fast and unexpected manner of
an apparently healthy individual, or with a known
cardiac disease but with low death probability. The
SCD is produced by an electric instability of the heart,
which prevents the occurrence of a heartbeat and, as
a consequence, the heart stops pumping blood to the
rest of the body. This produces a lack of blood flow
to the brain, with causes the loss of oxygen; this gives
rise to an abrupt loss of consciousness, and the death
of the individual.

Among the main causes of the SCD are the cardio-
vascular problems [1]. The cardiac diseases that are
more related to the SCD are the following: coronary
artery disease, cardiomyopathies, electrophysiological
anomalies, heart valve disease and congenital cardiac
anomalies, among others [2].

Similarly, it is estimated that the SCD is respon-
sible for 3 to 7 million of deaths worldwide every
year [2, 3]. In Latin American countries there are no
official records related to the SCD, which prevents
knowing its incidence in a precise manner. The reports
about this problem are not uniform, since the SCD
constitutes a multifactorial problem and varies accord-
ing to the age. In addition, there is the possibility that
it continues to increase as a result of the increment
of the coronary diseases (smoking, obesity, diabetes
mellitus, high blood pressure, high cholesterol levels),
thus becoming an important unresolved challenge.

At present, the therapies mostly used to prevent
the SCD are the medication and the implantable
cardioverter-defibrillator (ICD) [3], however, since they
are invasive and high cost tests, it is evident the search
for techniques that enable a fast detection of this type
of phenomena of great interest in the social and tech-
nological areas.

The ECG is one of the tools mostly used for the
study and diagnosis of heart diseases. It enables record-
ing the electrical activity of the heart by placing elec-
trodes on the body surface, such that it is obtained a
sequence of heartbeats described in a set of waveforms
(P, Q, R, S, T), segments and complexes [4, 5].

The existing mechanisms to measure the electrical
instability of the heart in the ECG include the QT
prolongation, QT dispersion, late potentials, T-wave
alternans (TWA) and heart rate turbulence [6]. The
TWA has been used for the analysis of the ventricular
repolarization, which manifests in the ECG as periodic
fluctuations of the T-wave amplitude [7].

The TWA estimation implies measuring, beat-to-
beat, the variability of the amplitude, duration and
shape of the ST-T segment of the ECG record [8]. The
TWA signal is generally in the range of microvolts;
therefore, it is necessary to use advanced digital signal
processing techniques and computational algorithms

for its detection.
In recent years, various TWA analysis procedures

have been proposed. The techniques mostly used have
been developed in time-domain, among which there is
the moving average method (MAM), which calculates
the TWA value using the difference of the mean value
of even and odd beats [9]; another method is the cor-
relation method (CM), which detects alternans using
the cross-correlation [10]. The methods developed in
frequency-domain include, among others, the spectral
method (SM), which utilizes the discrete Fourier trans-
form (DFT) to analyze the frequency component at
0.5 cycles per beat (cpb) [11]. A similar method is com-
plex demodulation (CD), which fits a sinusoidal signal
at the frequency of 0.5 cycles per beat of the aligned
T-waves [12]. The main drawback of these methods
is that they are very sensitive to signals with noise.
Recently, artificial intelligence techniques are being
used for SCD classification [5].

With the purpose of overcoming the limitations of
the methods previously described, Ghoraani et al. [13]
propose a method called Adaptive-SM for detection
and quantification of TWA, which is based on the pro-
cess of the SM method and carries out the analysis
of TWA using time-frequency distributions; hence, it
enables representing the spectral variations of TWA
along time, and at the same has the capability of fol-
lowing nonstationary structures. On the other hand, it
utilizes the non-negative matrices factorization (NMF)
with the purpose of separating the noise from the TWA
signal, so that the detection capability is improved.

The main objective in this work is evaluating the
performance of the Adaptive-SM method in different
scenarios. In order to achieve this objective, a set of
synthetic signals (simulations) with and without added
TWA of variable amplitudes, and with different levels
of noise, have been utilized. The first group, i.e., the
synthetic signals with added TWA were generated from
five base signals to which alternans with different am-
plitudes have been added: 10µV , 20µV , 50µV , 100µV
and 200µV . Therefore, there are 25 signals available;
the alternans are generated from three wave shapes:
Gaussian, triangular and rectangular, which results
in 75 signals. At last, five different levels of Gaussian
white noise were added to all ECG signals, with SNR:
10, 20, 30, 40 and 50. These signals together with the
noise-free signals resulted in a total of 450 test sig-
nals. For the second group, constituted by synthetic
signals with TWA, five signals were taken as base,
with three different wave shapes (15 signals) and five
noise levels. Therefore, together with the noise-free
signals, 90 signals were obtained. Hence, between the
two groups there is a total of 540 synthetic test signals.
Then, the test on real signals was developed for which
the Adaptive-SM method was applied to 36 signals of
Physionet’s TWADB database. The signals belong to
healthy patients and to patients that have the risk of
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SCD. The TWA magnitude was calculated with the
purpose of determining the existence or absence of
alternans of the test signal. This enabled to establish
values of sensitivity, specificity and accuracy. In addi-
tion, a comparison of such parameters was carried out
with the SM and MAM methods which are available
in the TWAnalyser software [14].

2. Materials and methods

The present work is focused on the analysis of heart
signals; 540 synthetic signals and 36 signals from the
TWADB database, with the purpose of detecting TWA
in the signals using the Adaptive-SM method, and then,
obtaining the quality parameters of the algorithm, to
evaluate its performance.

Initially, the method requires a preprocessing stage
to filter the signals, and to detect and segment the
characteristic points of the ECG signal.

Then, the Adaptive-SM method is applied followed
by the NMF technique, with the purpose of detecting
the presence or absence of alternans in the signal. This
enables the classification of the signals with and with-
out TWA. Figure 1 shows the stages of the proposed
methodology.

Figure 1. Proposed methodology for the detection of SCD.

This procedure enables obtaining the quality pa-
rameters of the model, namely sensitivity, specificity
and accuracy.

2.1. Development of the experimental phase

First, it was tested the performance of the algorithm on
450 synthetic signals, which represent signals without
TWA, with different noise levels and variable alternan
amplitude. In addition, a second group of 90 signals
without added TWA, i.e., with amplitude 0µV and
different noise levels.

Then, 36 signals taken from the T-Wave Alternans
Database (TWADB) presented in [15] were selected,
which includes signals belonging to healthy patients
and patients with risk factors associated to SCD. The
ECG records have been sampled at 500 Hz with an
approximate duration of two minutes.

The 36 signals are divided as follows, 10 signals
corresponding to healthy patients, and the remaining
26 signals of patients with risk factors associated to

SCD, these records have been obtained from patients
with myocardial infarctions, transient ischemia, and
ventricular tachyarrhythmias, among others.

2.2. Preprocessing

In general, heart signals have noise that disturbs and
distorts the information contained in the signal. The
noise is caused by external interferences, such as the
body movement, breathing and muscle spasms, bad
placement of the electrodes, etc. This is why a robust
preprocessing stage is required, which includes the
elimination of noise, the removal of interferences at
different external frequencies and the correction of the
baseline deviation [4].

The methods utilized should guarantee that an ap-
propriate filtering is carried out, as well as that there
is no loss of relevant information, since the alternans
are often confused with noise components because they
are in the level of microvolts. In this case, the aim is
to maintain the alternans characteristics, and at the
same time, eliminate noise.

On the other hand, as a prerequisite for the
Adaptive-SM method, it is necessary to extract the
ST-T segment from every beat. Therefore, a method
for extracting the characteristics is required, and an-
other for segmentation of the different waves, segments
and complexes that constitute the ECG signal [5].

2.3. Description of Adaptive-SM

The Adaptive-SM method utilizes time-frequency dis-
tributions (TFD) to obtain a representation of the
frequency components of the signal along time. It is
constituted by two stages, (i) alignment and (ii) esti-
mation of the adaptive TFD.

2.3.1. Alignment

With the aligned waves it is constructed a matrix A,
as shown in Equation 1, of dimension M × N, where
M is the number of beats, in this case 128, and N is
the length of the segment ST-T.

A =


T1(1) T1(2) · · · T1(N)
T2(1) T2(2) · · · T2(N)
T3(1) T3(2) · · · T3(N)

...
... · · ·

...
TM (1) TM (2) · · · TM (N)

 =
[
A1 A2 · · · AN

]
(1)

The rows represent the ST-T segments of each beat
and the columns describe the beat-to-beat variations
of the ST-T segment. The graphical representation of
alignment matrix A is shown in Figure 2.
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Figure 2. Aligned ST-T segments (128 segments) with a
length of 132 samples, of the signal TWADB55.

2.3.2. Adaptive TFD

TFD is a two-dimensional representation of the signal
energy in terms of time and frequency. The adaptive
TFD method utilizes the Matching Pursuit algorithm
to decompose a signal x in time-frequency atoms. Once
the signal is decomposed, the Wigner-Ville distribu-
tion is used to obtain the energy distribution in the
time-frequency domain, using Equation 2.

V (t, f) =
I∑
i=1
|αγi|2 WVGγi(t, f) (2)

Matrix Vi is generated applying the Adaptive TFD
method to matrix A, and then a matrix defined by
Equation 3 is constructed calculating the average.

VM
2 ×M = 1

N

N∑
i=1

Vi (3)

The TWA magnitude is calculated taking the en-
ergy values at 0.5 cycles per beat. The energy at 0.5
cycles per beat T(t) and the energy values of the noise
present in the interval 0.36 to 0.49 cycles per beat, are
required to estimate the TWA value.

Figures 3 and 4 show a graphical representation of
the adaptive TFD on two heart signals of the TWADB
database [15].

Figure 3. Average adaptive TFD of the TWADB55 sig-
nal corresponding to a healthy patient; it is observed low
alternan values at 0.5 cpb.

Figure 4. Average adaptive TFD of the TWADB12 signal
corresponding to a patient with risk factors of SCD; it is
observed low alternan values at 0.5 cpb, however, between
samples 20 and 40 there is a possible alternan component.

2.4. Non-negative matrices factorization

A new matrix Vl×M ′ is constructed in this stage, where
in this case I = 16 and M is equal to the length of
the analysis window, 128 in this case. NMF factors
the input matrix V in two matrices Wm×r and Hr×n
of smaller size. Taking the value r = 3, three vectors
W1, W2 and W3 are determined. The representative
components of the TWA magnitude are grouped in a
single vector represented as Wt .

The TWA magnitude is expressed according to
Equation 4, and thus it is possible to separate the
alternans components of the noise.
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TWA = wtht (4)
At last, the TWA value of vector wt is calculated,

which is the component with the greatest TWA mag-
nitude, according to equation 5.

f = Real
√
T − µnoise (5)

Figures 5 and 6 show the separation of the alternans
components of the noise. The upper graph indicates
the alternan components, and the lower part shows
the noise extracted from the signal.

Figure 5. Decomposition of the TWADB55 signal in its
alternan and noise components.

Figure 6. Decomposition of the TWADB12 signal in its
alternan and noise components.

Figures 7 and 8 correspond to the signal factorized
in three components; the component with the greatest
TWA magnitude is indicated in the graph.

Figure 7. Component with the greatest TWA magnitude
of the TWADB55 signal, the TWA is calculated at 0,5
bcpl.

Figure 8. Component with the greatest TWA magnitude
of the TWADB12 signal, the TWA is calculated at 0,5
bcpl.

2.5. Classification

Immediately after calculating the TWA magnitude, a
threshold value (Th) of 1, 5 µV is established. Then,
the signals are classified according to the hypothesis
given by Equation 6.

f > Th⇒ H0
f < Th⇒ H1

(6)

Where H0 indicates presence of TWA in the signal,
and inversely, H1 indicates absence of TWA.
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3. Results and discussion

3.1. Tests with synthetic signals

This first test was carried out with the purpose of eval-
uating the performance of the Adaptive-SM method
on synthetic signals, which simulate heart signals, to
which artificial alternans and noise have been added,
at different levels.

The scheme of Figure 9 shows the synthetic signals
used, divided in two groups, and the process necessary
to find the quality parameters.

Figure 9. Process for obtaining the quality parameters
using synthetic signals with and without added TWA.

Initially, the SM-Adaptive method was evaluated in
90 synthetic signals without TWA, i.e., signals that sim-
ulate heart signals without the presence of alternans,
which correspond to healthy individuals. The results
of the classification obtained applying the method to
the 90 signals can be found in Table 1, the values are
presented according to the different levels of noise.

Table 1. Classification of the synthetic signals without
TWA according to the levels of added noise

SNR (dB) VN FP
Without noise 15 (100 %) 0 (0 %)

50 15 (100 %) 0 (0 %)
40 15 (100 %) 0 (0 %)
30 15 (100 %) 0 (0 %)
20 12 (80 %) 3 (20 %)
10 11 (73,33 %) 17 (26,67 %)

Total 83 (92,22 %) 23 (7,78 %)

As a result, 83 true negatives (TN) and 7 false
positives (FP) were obtained. In this case, the true
negatives indicate that a signal without TWA has
been effectively classified as a signal without TWA;
on the other hand, the false positives indicate that a
signal without TWA has been classified as a signal
with TWA.

Table 1 shows that the signals without the presence
of any type of noise, which does not occur in real sig-
nals, have been correctly classified. It occurs similarly
with the signals with high SNR values, 50, 40 and 30,
which correspond to low noise levels (amplitude of the
noise), since they are inversely proportional. The clas-
sification of the signals starts generating false results

for lower values of SNR, it is seen that for SNR of
20 and 10 the number of false positives is 3 and 17,
respectively, i.e., for these values of SNR the classi-
fication does not show a 100 % accuracy and in any
case it has been reduced up to 73.33 % for the signals
with the lowest SNR value. This indicates that the
algorithm is sensitive to high levels of noise (low SNR),
in particular for values of SNR smaller than 20.

However, when calculating the specificity of the
method which was found to be 92.22 %, the Adaptive-
SM method has been capable of appropriately classify-
ing signals without TWA (healthy individuals), even
with high noise levels.

Continuing with the tests on synthetic signals, 450
synthetic signals with TWA artificially added have
been taken, which represent individuals with risk fac-
tors associated to the SCD.

The results of the classification are shown in Tables
2 and 3. In Table 2 the results are divided according
to the noise level, while Table 3 shows the results
according to the amplitude of the added alternans.

Table 2. Classification of the synthetic signals with TWA
according to the added noise levels

SNR(dB) VP FN
Without noise 75 (100 %) 0 (0 %)

50 75 (100 %) 0 (0 %)
40 75 (100 %) 0 (0 %)
30 74 (98.66 %) 1 (1,34 %)
20 70 (93.33 %) 5 (6,67 %)
10 58 (77,33 %) 17 (22,67 %)

Total 427 (94,89 %) 23 (7,78 %)

Table 3. Classification of the synthetic signals with TWA
according to the amplitude of the added alternans

Amplitude (µV) VP FN
10 76 (84,44 %) 14 (15,56 %)
20 85 (94,44 %) 5 (5,56 %)
50 87 (96,67 %) 3 (3,33 %)
100 89 (98,89 %) 1 (1,11 %)
200 90 (100 %) 0 (0 %)

Total 427 (94,89%) 23 (5,11 %)

As a result of the classification carried out by the
Adaptive-SM method, there are 427 tests diagnosed
as true positives and 23 as false negatives. The true
positives indicate that a signal with TWA has been cor-
rectly classified, and on the contrary, the false negatives
indicate that a signal with TWA has been classified
as a signal without TWA.

Table 2 includes the responses of the method for
signals with different noise levels. A noise-free signal
is diagnosed with an accuracy of 100 %, and similar
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results are achieved for SNR values of 50 and 40, i.e.,
as the SNR value of the signal is greater, the method
shows more accurate results. For SNR values of 30
dB, 20 dB and 10 dB, the classification starts to give
wrong results; it is the case that for these values of
SNR there are 1, 5 and 17 false negatives, respectively.
Therefore, the method is more sensitive for values of
SNR smaller than 30 dB, resulting in false detections.

Table 3 shows the resulting classification for differ-
ent values of alternans. For an amplitude of 200 µV the
detection is made with an accuracy of 100 %, which
indicates that, as the alternans contained in the signal
are greater, it is simpler for the algorithm to detect
them. As the amplitude of the alternans decreases,
also does the detection percentage, and for 10 µV it
has decreased up to 84.44 %, i.e., the method shows
difficulties in detecting a very small alternan wave,
which could be due to the fact that such wave is being
confused with noise or another type of interference.

From the known values of true positives and false
negatives, the value of sensitivity was determined as
94.89 %, an acceptable value, which shows that the
method has a high probability of correctly classifying
a signal with TWA (individuals with risk of SCD).
Therefore, the method has been capable of performing
a correct classification with an accuracy of 94.44 %,
which indicates that it has a high probability of diag-
nosing correctly signals with and without TWA, with
different levels of noise and variable alternans.

3.2. Tests with signals from the TWADB
database

A second way for evaluating the performance of the
Adaptive-SM method was conducted utilizing real sig-
nals from the Physionet’s TWADB database. The se-
lected signals correspond both to healthy individuals
and to individuals with risk of SCD, as shown in the
scheme in Figure 10.

Figure 10. Process for obtaining the quality parameters
using signals from the TWADB database.

The tests were carried in two groups of analysis, on
one side, ten signals from healthy patients were taken,
i.e., signals that do not contain alternans. Once the
Adaptive-SM method is applied to these signals, the
classification shown in Table 4 is obtained as a result,
which has the following information: name of the signal

chosen, calculated value of the detected alternan and
the diagnosis generated, true negative or false positive.

Table 4. Results given by the Adaptive-SM method in
signals of healthy individuals

Signal TWA Value Diagnosis
twa39 0 VN
twa46 8,3949 FP
twa55 0 VN
twa60 0 VN
twa10 0 VN
twa23 0 VN
twa61 0 VN
twa62 0 VN
twa71 0 VN
twa93 27,1057 FP

The method classified 8 of 10 signals as signals
without TWA, i.e., there are 8 true negatives and 2
false positives. This indicates that the method is ca-
pable of correctly detecting a signal without TWA
and, therefore, a healthy individual (specificity), with
a probability of 80 %.

The other group of analysis is constituted by 26
signals corresponding to patients with risk of SCD.
The results are shown in Table 5, which has the follow-
ing information: name of the signals, calculated TWA
value, in µV, and diagnosis of the detection.

In the case of signals with risk of SCD, of the 26
signals, 5 were classified as signals without TWA, i.e.,
there are 5 false negatives; on the other hand, the re-
maining 21 signals have been correctly classified, and
thus there are 21 true negatives. With the number of
true positives and false negatives, the sensitivity of the
method has been calculated resulting in 80.76 %, i.e.,
it has a high probability of correctly detecting signals
without TWA and, therefore, individuals with risk of
SCD.

According to the data of Tables 4 and 5, there are
29 signals correctly classified of a total of 36 signals,
among signals with and without TWA, which results
in an accuracy of the method of 80.56 %, i.e., the
method has a high probability of correctly detecting
and classifying signals with and without TWA.
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Table 5. Results given by the Adaptive-SM method in
signals of patients with risk of SCD

Signal TWA Value Diagnosis
twa07 8,1842 VP
twa32 8,0292 VP
twa85 0 FN
twa92 3,6081 VP
twa00 0 FN
twa08 0 FN
twa45 40,2243 VP
twa63 1,8172 VP
twa68 4,1085 VP
twa95 6,5078 VP
twa12 0 FN
twa27 0 FN
twa03 24,1159 VP
twa11 9,8338 VP
twa18 6,7598 VP
twa19 6,1028 VP
twa20 0 FN
twa31 10,3374 VP
twa36 6,6947 VP
twa40 0 FN
twa41 5,6962 VP
twa48 8,1214 VP
twa49 4,0385 VP
twa53 2,6401 VP
twa54 53,9866 VP
twa83 9,1466 VP

Subsequently, in this work a comparison was made
between the Adaptive-SM method and the SM and
MMA methods; these latter are implemented in the
TWAnalyser software [14]

The 36 signals previously described were taken for
this experiment. The results of specificity, sensitivity
and precision are shown in Table 6.

The MMA method is the one that exhibits more
problems, since its sensitivity of 100 % and specificity
of 0 % suggests that it classifies all signals as signals
with TWA, although they do not have alternans. Then,
this method considers any type of disturbance as an
alternan, which is wrong, and this is the reason why
the methods classifies incorrectly 50 % of the test sig-
nals. On the other hand, the SM method shows a more
balanced performance, however, when compared to
the Adaptive-SM the percentage of accuracy in the
classification is considerably smaller, with a precision
of only 63.89 %. The Adaptive-SM method results a
more acceptable method with a balanced behavior in
the detection of signals with and without TWA.

Table 6. Quality parameters of the Adaptive-SM, SM and
MMA methods

Parameter Adaptative-SM SM MMA
Sensitivity 80,76% 61,53% 100%
Specificity 80% 70% 0%
Precision 80,56% 63,89% 50%

From the results in both types of tests, i.e., on syn-
thetic signals and records from the TWADB databases,
these indicate a better performance of the Adaptive-
SM method with respect to the other two methods,
in all quality indices. Specifically, the Adaptive-SM
algorithm is characterized by its robustness in the
detection of alternans.

4. Conclusions

The extensive experiments showed that the Adaptive-
SM method is capable of correctly detecting alternans
and classifying the signals. In addition, it could be com-
pared, by means of standard metrics, the performance
of the algorithm when subject to different noise and
alternans levels, exhibiting advantages with respect to
the classical SM and MMA methods. This superiority
is because the Adaptive-SM utilizes time-frequency dis-
tributions that enable a more detailed analysis of the
signal, thus avoiding the loss of relevant information
contained in the heart signal and, therefore, yielding
better results in the detection of alternans.

In conclusion it could be indicated that the
Adaptive-SM is a promising technique for the early
and non-invasive detection of the SCD.

In a future work it will be studied the capability
of the algorithm for long-term analysis, and its per-
formance in mobile monitoring systems intended to
eHealth; all this accompanied with the criterion of an
expert cardiologist specialized in SCD.
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