Análisis numérico de un sistema de calentamiento de agua utilizando un colector solar de placa plana

Contenido principal del artículo

William Quitiaquez
José Estupiñan-Campos
C.A. Isaza Roldán
Fernando Toapanta-Ramos
Andrés Lobato-Campoverde


colector, energía solar, temperatura, simulación CFD


El objetivo de la presente investigación fue realizar un análisis numérico mediante CFD de un colector solar de placa plana; además, se realizó una comparación con resultados experimentales. El fluido de trabajo alcanzó una temperatura máxima de salida de 20.16 °C a las 12:00, el valor de la radiación solar se determinó para las coordenadas geográficas latitud –0.2252 y longitud –77.84; de forma similar, en este horario fue posible obtener una temperatura de la superficie del colector de 27.12 °C, como valor pico. Se determinó el menor rendimiento del dispositivo de transferencia de calor a las 10:00 con un valor de temperatura de salida del agua y temperatura máxima en la superficie del colector de 18.65 y 20.48 °C, respectivamente. Los resultados experimentales mostraron una temperatura máxima de 20.93 °C y una temperatura mínima de19.4 °C, derivando en un error de 4.01 % entre la simulación computacional y los datos experimentales.
Abstract 166 | PDF Downloads 86 PDF (English) Downloads 7 HTML Downloads 15 HTML (English) Downloads 7 EPUB Downloads 3 EPUB (English) Downloads 0


[1] L. Evangelisti, R. D. L. Vollaro], and F. Asdrubali, “Latest advances on solar thermal collectors: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 114, p. 109318, 2019. [Online]. Available:
[2] J. Calle-Sigüencia and O. Tinoco-Gómez, “Obtención de ACS con energía solar en el cantón Cuenca y análisis de la contaminación ambiental,” Ingenius, no. 19, pp. 89–101, 2018. [Online]. Available:
[3] L. M. Ayompe and A. Duffy, “Analysis of the thermal performance of a solar water heating system with flat plate collectors in a temperate climate,” Applied Thermal Engineering, vol. 58, no. 1, pp. 447–454, 2013. [Online]. Available:
[4] W. M. Hashim, A. T. Shomran, H. A. Jurmut, T. S. Gaaz, A. A. H. Kadhum, and A. A. Al-Amiery, “Case study on solar water heating for flat plate collector,” Case Studies in Thermal Engineering, vol. 12, pp. 666–671, 2018. [Online]. Available:
[5] E. Arteaga-López, C. Ángeles-Camacho, and F. Bañuelos-Ruedas, “Advanced methodology for feasibility studies on building-mounted wind turbines installation in urban environment: Applying CFD analysis,” Energy, vol. 167, pp. 181–188, 2019. [Online]. Available:
[6] A. Marroquín-De Jesús, J. M. Olivares-Ramírez, O. Jiménez-Sandoval, M. A. Zamora-Antuñano, and A. Encinas-Oropesa, “Analysis of flow and heat transfer in a flat solar collector with rectangular and cylindrical geometry using CFD,” Ingeniería, Investigación y Tecnología, vol. 14, no. 4, pp. 553–561, 2013. [Online]. Available:
[7] E. Mohamed, S. Riffat, S. Omer, and R. Zeinelabdein, “A comprehensive investigation of using mutual air and water heating in multi-functional dx-samhp for moderate cold climate,” Renewable Energy, vol. 130, pp. 582–600, 2019. [Online]. Available:
[8] W. M. Duarte, T. F. Paulino, J. J. G. Pabón, S. Sawalha, and L. Machado, “Refrigerants selection for a direct expansion solar assisted heat pump for domestic hot water,” Solar Energy, vol. 184, pp. 527–538, 2019. [Online]. Available:
[9] A. X. Andrade Cando, W. Quitiaquez Sarzosa, and L. F. Toapanta, “CFD analysis of a solar flat plate collector with different cross sections,” Enfoque UTE,, vol. 11, no. 2, pp. 95–108, 2020. [Online]. Available:
[10] W. Ji, J. Cai, J. Ji, and W. Huang, “Experimental study of a direct expansion solarassisted heat pump (dx-sahp) with finnedtube evaporator and comparison with conventional dx-sahp,” Energy and Buildings, vol. 207, p. 109632, 2020. [Online]. Available:
[11] H. Fathabadi, “Novel low-cost parabolic trough solar collector with tpct heat pipe and solar tracker: Performance and comparing with commercial flat-plate and evacuated tube solar collectors,” Solar Energy, vol. 195, pp. 210–222, 2020. [Online]. Available:
[12] S. N. Rabelo, T. de F. Paulino, W. M. Duarte, S. Sawalha, and L. Machado, “Experimental analysis of the influence of water mass flow rate on the performance of a co2 direct-expansion solar assisted heat pump,” International Journal of Chemical and Molecular Engineering, vol. 12, no. 7, pp. 327–331, 2018. [Online]. Available:
[13] X. Kong, P. Sun, S. Dong, K. Jiang, and Y. Li, “Experimental performance analysis of a direct-expansion solar-assisted heat pump water heater with r134a in summer,” International Journal of Refrigeration, vol. 91, pp. 12–19, 2018. [Online]. Available:
[14] J. Lee and T.-H. Song, “Conduction/radiation combined heat transfer with contact resistance for application to vacuum insulation,” International Journal of Heat and Mass Transfer, vol. 129, pp. 380–388, 2019. [Online]. Available:
[15] F. Jiang, Z. Li, Q. Zhao, Q. Tao, S. Lu, and K. Zhao, “The influence of exterior louver blinds’ geometric and thermal attributes on the convective heat transfer at building facades,” Solar Energy, vol. 193, pp. 654–665, 2019. [Online]. Available:
[16] Y. Zhang, J. Wang, W. Liu, and Z. Liu, “Heat transfer and pressure drop characteristics of r134a flow boiling in the parallel/tandem microchannel heat sinks,” Energy Conversion and Management, vol. 148, pp. 1082–1095, 2017. [Online]. Available:
[17] J. P. Meyer and M. Everts, “Chapter three - a review of the recent developments in laminar, transitional, quasi-turbulent and turbulent forced and mixed convective flow through horizontal tubes,” in Advances in Heat Transfer, ser. Advances in Heat Transfer, E. M. Sparrow, J. P. Abraham, J. M. Gorman, and W. Minkowycz, Eds. Elsevier, 2019, vol. 51, pp. 131–205. [Online]. Available:
[18] S. MOJUMDER, S. A. H. A. Sourav, S. A. H. A. Sumon, and M. A. H. MAMUN, “Combined effect of reynolds and grashof numbers on mixed convection in a lid-driven t-shaped cavity filled with water-al2o3 nanofluid,” Journal of Hydrodynamics, Ser. B, vol. 27, no. 5, pp. 782–794, 2015. [Online]. Available:
[19] P. Sánchez-Palencia, N. Martín-Chivelet, and F. Chenlo, “Modelización del coeficiente de transmitancia térmica de módulos fotovoltaicos para integración en edificios,” in XVI Congreso Ibérico y XII Congreso Iberoamericano de Energía Solar, 2018. [Online]. Available:
[20] N. Rahbar, J. A. Esfahani, and E. Fotouhi-Bafghi, “Estimation of convective heat transfer coefficient and water-productivity in a tubular solar still - CFD simulation and theoretical analysis,” Solar Energy, vol. 113, pp. 313–323, 2015. [Online]. Available:
[21] C.-H. Wang, Y.-Y. Feng, K. Yue, and X.-X. Zhang, “Discontinuous finite element method for combined radiation-conduction heat transfer in participating media,” International Communications in Heat and Mass Transfer, vol. 108, p. 104287, 2019. [Online]. Available:
[22] B. P. Jelle, S. E. Kalnes, and T. Gao, “Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives,” Energy and Buildings, vol. 96, pp. 329–356, 2015. [Online]. Available:
[23] A. J. Cetina-Quiñones, A. Bassam, G. Hernández-Chan, I. Hernández Benítez, J. Hernández Reyes, and D. Lugo Chávez, “Modelación térmica de un colector solar de canal parabólico mediante el método de elementos finitos,” Ingeniería, vol. 21, no. 1, pp. 1–12, 2017. [Online]. Available:
[24] W. Pang, Y. Cui, Q. Zhang, G. J. Wilson, and H. Yan, “A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions,” Renewable and Sustainable Energy Reviews, vol. 119, p. 109599, 2020. [Online]. Available:
[25] I. Visa, M. Moldovan, and A. Dutˇa, “Novel triangle flat plate solar thermal collector for facades integration,” Renewable Energy, vol. 143, pp. 252–262, 2019. [Online]. Available:
[26] D. H. Lobón, E. Baglietto, L. Valenzuela, and E. Zarza, “Modeling direct steam generation in solar collectors with multiphase CFD,” Applied Energy, vol. 113, pp. 1338–1348, 2014. [Online]. Available:
[27] A. Aghagoli and M. Sorin, “Thermodynamic performance of a CO2 vortex tube based on 3d CFD flow analysis,” International Journal of Refrigeration, vol. 108, pp. 124–137, 2019. [Online]. Available:
[28] Z. Badiei, M. Eslami, and K. Jafarpur, “Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling,” Energy, vol. 192, p. 116719, 2020. [Online]. Available:
[29] L. Zhou, Y. Wang, and Q. Huang, “CFD investigation of a new flat plate collector with additional front side transparent insulation for use in cold regions,” Renewable Energy, vol. 138, pp. 754–763, 2019. [Online]. Available:
[30] D. G. Gunjo, P. Mahanta, and P. S. Robi, “CFD and experimental investigation of flat plate solar water heating system under steady state condition,” Renewable Energy, vol. 106, pp. 24–36, 2017. [Online]. Available: