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Resumen Abstract
Guillain-Barré Syndrome (GBS) is a neurological dis-
order where the body’s immune system attacks the pe-
ripheral nervous system. This disease evolves rapidly
and is the most frequent cause of paralysis of the
body. There are four variants of GBS: Acute Inflam-
matory Demyelinating Polyneuropathy, Acute Motor
Axonal Neuropathy, Acute Sensory Axial Neuropa-
thy, and Miller-Fisher Syndrome. Identifying the GBS
subtype that the patient has is decisive because the
treatment is different for each subtype. The objective
of this study was to determine which oversampling al-
gorithm improves classifier performance. In addition,
to determine whether balancing the data improves
the performance of the predictive models. Three over-
sampling methods (ROS, SMOTE, and ADASYN)
were applied to the minority class. Three classifiers
(C4.5, SVM and JRip) were used.

El síndrome de Guillain-Barré es un trastorno neu-
rológico donde el sistema inmune del cuerpo ataca
al sistema nervioso periférico. Esta enfermedad es
de rápida evolución y es la causa más frecuente de
parálisis del cuerpo. Existen cuatro variantes de SGB:
polineuropatía desmielinizante inflamatoria aguda,
neuropatía axonal motora aguda, neuropatía axonal
sensorial aguda y síndrome de Miller-Fisher. Identi-
ficar el subtipo de SGB que el paciente contrajo es
determinante debido a que el tratamiento es diferente
para cada subtipo. El objetivo de este estudio fue
determinar cuál algoritmo de sobremuestreo mejora
el rendimiento de los clasificadores. Además, deter-
minar si balancear los datos mejoran el rendimiento
de los modelos predictivos. Aplicamos tres métodos
de sobremuestro (ROS, SMOTE y ADASYN) a la
clase minoritaria, utilizamos tres clasificadores (C4.5,
SVM y JRip).

20

https://doi.org/10.17163/ings.n25.2021.02
oscar.chavez@ujat.mx
https://orcid.org/0000-0001-8475-0914
https://orcid.org/0000-0003-3146-9349
https://orcid.org/0000-0001-5700-7615
https://orcid.org/0000-0002-0324-9886
https://doi.org/10.17163/ings.n25.2021.02


Torres-Vásquez et al. / Impact of oversampling algorithms in the classification of Guillain-Barré syndrome

main subtypes 21

The performance of the models was obtained using
the ROC curve. Results show that balancing the
dataset improves the performance of the predictive
models. The SMOTE Algorithm was the best balanc-
ing method, in combination with the classifier JRip
for OVO and the classifier C4.5 for OVA.

El rendimiento de los modelos se obtuvo mediante la
curva ROC. Los resultados muestran que balancear
el dataset mejora el rendimiento de los modelos pre-
dictivos. El algoritmo SMOTE fue el mejor método
de balanceo en combinación con el clasificador JRip
para OVO y el clasificador C4.5 para OVA.

Keywords: ADASYN, Classifiers, Unbalance, ROS,
SMOTE, Wilcoxon.

Palabras clave: ADASYN, clasificadores, desbalan-
ceo, ROS, SMOTE, Wilcoxon.
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1. Introduction

The Guillain-Barré Syndrome (GBS) is defined as an
autoimmune polyradiculoneuropathy and is the most
frequent cause of acute generalized paralysis [1]. The
GBS occurs when the immune system attacks part of
the peripheral nervous system. This disease evolves
rapidly and is characterized by weakness of the legs
which further advances to the arms, “ascending paral-
ysis”. The initial symptoms are muscle weakness and
tingling in the extremities. The severe cases require
mechanical ventilation. The cause is unknown, but two
thirds of the cases precede to a respiratory infection or
acute gastroenteritis. It has been recently associated
to the Zika virus. The GBS affects between 0.4 and 2.4
cases per 100,000 inhabitants/year. It appears at any
age, but it often shows a higher frequency in people
between 50 and 80 years old. It is slightly more fre-
quent in men than in women. It has a mortality rate
between 2% and 8%. Most people eventually recover
completely when the disease is mild or moderate, and
in other cases there may remain harms in the nervous
system for long time or even permanently [2]. Electro-
physiological and nerve conduction studies determine
the tests for diagnosing GBS. There are four main
subtypes of GBS:

• Acute Inflammatory Demyelinating Polyneuropathy
(AIDP).

• Acute Motor Axonal Neuropathy (AMAN).

• Acute Sensory Axial Neuropathy a (AMSAN).

• Miller-Fisher Syndrome (MF).

The recovery of the patient largely depends on the
prompt identification of the subtype of GBS. Each
subtype should be treated in a different manner, and
the treatment and costs vary according to the subtype
developed by the patient. In severe cases that generate
temporary or permanent immobility, the rehabilitation
therapies are often long and costly generating psycho-
logical and economic implications to the sick person
and to the relatives.

Machine Learning is a branch of Artificial Intel-
ligence that uses different mathematical, statistical
and optimization techniques, with the purpose of de-
veloping information analysis tools so that computers
«learn» through examples [3]. At present, disciplines
such as finance, oil, marketing, sales and health utilize
automatic learning as technological tool to make pre-
dictions. Specifically, in the health area, an increasing
number of models are being developed for diagnos-
ing diseases such as cancer [4], [5], diabetes [6], [7],
Parkinson [8] and Alzheimer [9], with excellent results.

Classification algorithms are in charge of analyzing
the data provided and determining the patients that
are healthy and the ones that are sick. However, one

of the most common problems in medical diagnosis is
the disproportionality of cases. In real life there are
more healthy patients than sick patients. For exam-
ple, if it is desired to diagnose patients with diabetes,
it will be found that a larger number of people are
healthy and a smaller number are sick with diabetes.
This disproportionality in the data is known as data
unbalancing. There are two types of unbalancing: bi-
nary and multiclass unbalancing. Binary unbalancing
occurs when in a dataset of two classes, one of the
classes has a larger number of data (majority class)
with respect to the other class (minority class). On the
other hand, multiclass unbalancing occurs when the
dataset comprises more than two classes, and the data
distribution is unequal for each of the classes [10].

Data unbalancing may affect the result of the clas-
sifiers since it tends to bias the results towards the
majority class (healthy patients). The standard classi-
fication algorithms are built for balanced data, i.e., the
same number of healthy and sick cases. For example,
for the case of patients with diabetes, the classifier will
ignore the patients with diabetes and will only take
into account healthy patients. The problem is that it is
desired to determine sick patients and not the healthy
ones. For this reason, it is necessary to use techniques
that help balancing the data.

In the specialized literature there are three tech-
niques most commonly used to overcome the problem
of data unbalancing [11].

• At the data level. This technique adds or
eliminates data to the class, until balancing the
dataset. This technique is also known as sampling
and is divided in three groups:

– Oversampling: consists in adding data to
the minority class until reaching balance
with the majority class.

– Downsampling: consists in eliminating data
from the majority class until reaching equi-
librium with the minority class.

– Hybrid: this technique combines oversam-
pling and downsampling simultaneously, to
reach a better balance between classes.

• At the algorithm level. They adapt or create
classification algorithms to reinforce the predic-
tion of the class.

• Sensitive cost. considers the costs associated
with the incorrect classification of the samples.
It uses different cost matrices that describe the
costs of incorrectly classifying any particular data
example.

The technique at the data level is one of the most
popular because it is independent of the classifier used,
and besides the data are treated before being used



Torres-Vásquez et al. / Impact of oversampling algorithms in the classification of Guillain-Barré syndrome

main subtypes 23

by the classifier. The oversampling technique is the
most commonly used since it adds data to the minority
class. There are different oversampling techniques that
generate data, yielding good results with respect to
downsampling which may eliminate important data
and affect the result of the classifier [12].

On the other hand, besides data unbalancing, the
distribution of the instances affects the results of the
classifiers [13]. There are techniques that add synthetic
data to the minority class and locate them in strate-
gic places to resolve the unbalancing problem and the
position of the instances.

The objective of this study was twofold. The first
was identifying which of the three oversampling al-
gorithms used to balance the original GBS dataset
improves the results of the classification algorithm.
The second objective was to establish if balancing
the data improves the performance of the predictive
models created with balanced data, with respect to
models created with unbalanced data. For this pur-
pose, Wilcoxon statistical test is utilized to know if
there is a statistically significant difference between
such models. At present, there are no studies in the
specialized literature to identify the main subtypes
of the GBS using Automatic Learning algorithms. In
previous studies [14], [15], predictive models were cre-
ated using the original unbalanced dataset. In this
experimental study, the training subsets are balanced
using three oversampling techniques (ROS, SMOTE
and ADASYN). Results demonstrate that balancing
the data improves the performance of the predictive
models. A performance of 90% was achieved in some
cases.

For this study, two binarization techniques (OVO
and OVA) were first used to create 10 binary subsets.
Then, the subsets were divided in training sets with
66% of the data, and test sets with 33% of the data.
Once the training data were obtained, three balancing
methods (ROS, SMOTE and ADASYN) were applied
to oversample the minority class and balance it with
the majority class. Once the data were balanced, three
classification algorithms were applied with different
approaches: C4.5 (decision tree), SVM (Support Vec-
tor Machine), JRip (Ripper). The performance of the
predictive models was determined using the Area Un-
der the Curve (AUC) of the ROC Curve. The results
of the predictive models are the average of the AUC
for 60 runs. At last, Wilcoxon test is applied to the
models created with balanced data that outperformed
the models created with unbalanced data, to know if
there is a statistically significant difference between
such models.

2. Materials and Methods

2.1. Dataset

The dataset used in this study is a collection of 129
patients diagnosed with GBS. One of the 4 main sub-
types of GBS was identified to each of these patients.
Table 1 shows the main features of the dataset.

Table 1. Features of the dataset

Characteristic Value
Number of classes 4
Number of instances 129
Number of attributes 16
Class 1 Instances (AIDP) 20
Class 2 Instances (AMAN) 37
Class 3 Instances (AMSAN) 59
Class 4 Instances (MF) 13

This information was obtained through the Na-
tional Institute of Neurology and Neurosurgery of the
City of Mexico (Instituto Nacional de Neurología y
Neurocirugía de la Ciudad de México). The original
dataset comprises 356 variables. In a previous paper 16
variables were identified as the most relevant ones [16].
The first 4 variables were clinical, and the following
14 belong to the nerve conduction test. The variables
used in the experiments are shown in the following:

v22: Symmetry (in weakness)
v29: Affectation of extraocular muscles
v30: Ptosis
v31: Cerebellar implication
v63: Amplitude of the left median motor nerve
v106: Area under the curve of the left ulnar motor nerve
v120: Area under the curve of the right ulnar motor nerve
v130: Amplitude of the left tibial motor nerve
v141: Amplitude of the right tibial motor nerve
v161: Area under the curve of the right peroneal motor
nerve
v172: Amplitude of the left median sensory nerve
v177: Amplitude of the right median sensory nerve
v178: Area under the curve of the right median sensory
nerve
v186: Latency of the right ulnar sensory nerve
v187: Amplitude of the right ulnar sensory nerve
v198: Area under the curve of the right sural sensory nerve

2.2. Automatic learning algorithms

2.2.1. Oversampling algorithms

Oversampling algorithms are a technique at the data
level that add data to the minority class, with the
purpose of balancing the unbalanced dataset. There
are diverse algorithms to oversample the classes. Three
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techniques that generate instances with different ap-
proaches were used for this study:

1. The Random Oversampling (ROS) Algorithm
obtains a random sample from instances of the
minority class and makes a copy of them. The
duplicated instances are placed randomly in the
dataset. ROS is a non-heuristic method whose
objective is to balance the minority class with
the majority class [17].

2. The Synthetic Minority Oversampling Technique
(SMOTE) oversamples the minority class gener-
ating synthetic instances with the purpose of bal-
ancing the minority class with the majority class
[18]. The new synthetic instances are generated
through interpolation between various instances
of minority classes, based on the nearest neigh-
bor rule. SMOTE performs this procedure in
the «feature space». The procedure to generate
synthetic data is the following: (a) Determine
the oversampling percentage necessary to be gen-
erated. (b) In order to generate the synthetic
objects, carry out the following procedure: (b1)
Randomly select an instance of a minority class.
(b2) Randomly choose its k-nearest neighbors
according to the Euclidean distance. (b3) Take
the difference between the feature vector and
each of the selected neighbors. (b4) Multiply the
difference times a random number between 0
and 1. (b5) Add this last value to the original
value of the sample. (b6) Return the synthetic
sample. (c) The new synthetic sample will be
placed between the instance originally selected
and each of the k-nearest neighbors.
The main difference between SMOTE and ROS is
that ROS duplicates data from the minority class
and adds them randomly. SMOTE generates syn-
thetic data and places them in a neighborhood
of the minority class.

3. The Adaptive Synthetic Sampling Approach for
Imbalanced Learning (ADASYN) is an extension
of SMOTE. ADASYN has two objectives: the
first is creating synthetic instances through linear
interpolation between the instances of the minor-
ity class, to reduce the imbalance of the minority
class with the majority class of the dataset. The
second objective that makes ADASYN different
with respect to SMOTE is that the data gener-
ated adaptively changes the decision boundary
adding data in the zone of the minority class
difficult to learn compared to the data of the
minority class which are easy to learn, through
a density distribution. ADASYN seeks to give
more weight to the data of the minority class
which are difficult to learn [19].

2.2.2. Classification algorithms

Three classification algorithms that determine their
results through different approaches were utilized. The
objective is contrasting the results of each of them:

1. Decision tree (C4.5): Is a supervised learning
algorithm in which each branch node represents
a choice among various options, and each leaf
node represents a decision. The classification
technique is performed by means of division cri-
teria, with a structure of inverted tree, similar to
a flowchart. It handles continuous and discrete
characteristics. It has high precision, stability, is
fast, easy to interpret and robust in the presence
of noise. C4.5 bases its results in a hierarchi-
cal and inductive learning manner, i.e., in the
discovery of patterns from examples [20].

2. Support Vector Machine (SVM): Is a supervised
learning algorithm which is employed for binary
classification. It belongs to the family of linear
classifiers, i.e., the original data are resized by
means of a mathematical function to search for a
linear separability between them. SVM is based
on the concept of constructing an optimal hyper-
plane, i.e., it creates a straight line that separates
the classes. The objective is to find the best hy-
perplane that divides the dataset and maximizes
the margin between the classes [21].

3. Ripper (JRip): Is one of the most popular algo-
rithms for classification problems, with a rule-
based approach. The classes are examined in
increasing size, and an initial set of rules is gen-
erated for the class using the reduced incremental
error JRip (RIPPER). It proceeds treating all ex-
amples of a particular sense in the training data
as one class, and finding a set of rules to cover all
members in that class. Afterwards, it passes to
the following class and does the same, repeating
this procedure until all classes are covered [22].

2.3. Performance Measure

The performance of the classification algorithms is
evaluated using the graph or curve of the Receiver
Operating Characteristics (ROC), and the Area Under
the Curve (AUC). The ROC curve measures how well
are the predictions classified, as well as the quality of
the model predictions [23]. The ROC curve is defined
as the sensitivity, which is the rate of true positives
shown in Equation 1. The 1-specificity is the rate of
false positives, shown in Equation 2. For this exper-
iment, it is used to identify among one of the GBS
subtypes.

sensitivity = V P

V P + FN
(1)
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1 − specificity = FP

V N + FP
(2)

The Area Under the Curve (AUC) enables identify-
ing a class. For example, recognizing if a patient suffers
a particular disease or is healthy. In this performance
measure, the values ≥ .900 are considered excellent
models. The values ≥ .700 indicate that they are good
models. However, values ≤ .500 are considered bad
models.

2.4. Binarization techniques

In classification problems it is common to find datasets
that are constituted by more than two classes, which
are known as multiclass datasets. Some classification
algorithms are only capable of discriminating between
two classes. For this reason, it is common to trans-
form a multiclass problem in binary subproblems. Two
binarization techniques are found in the literature;
One-Vs-One (OVO) and One-Vs-All (OVA) [24].

The OVO technique divides a problem of n classes
into n(n − 1)/2 binary subproblems, forming all possi-
ble pairs of classes. The OVA technique takes a class
as the minority class, and the remaining classes are
combined to form the majority class. This procedure is
performed n times according to the number of classes
that constitute the dataset. The OVO and OVA bi-
narization techniques are used to discriminate one
class from the others. In medical diagnosis problems,
they are used to identify a sick patient from other
healthy patients. Figures 1 and 2 show the 4 subsets
obtained with the OVA technique and the 6 subsets
obtained with the OVO technique, from the original
GBS dataset.

2.5. Validation

For each classification, the model is validated using
the train-test evaluation. The dataset is divided in two
subsets of data. The first is the training data, which
are used to build the model. The second are called
test data, which are maintained apart and are used to
evaluate the model. It is employed 2

3 of the dataset for
training and 1

3 for testing the model.

Figure 1. Binarization One-Vs-All (OVA)

3. Experimental procedure

As first step, the original unbalanced multiclass dataset
was converted in two binary subproblems. Two dif-
ferent binarization techniques (OVO and OVA) are
utilized. The difference between the two binarization
techniques is the following: the OVO technique creates
all possible combinations that can be formed with the
n classes that constitute a dataset; on the other hand,
OVA takes one class and converts it in minority class
and the remaining classes are combined to form the
majority class. OVA creates subsets depending on the
total number of classes in the original dataset. The
objective of creating binary subsets is that the bal-
ancing methods used in this study identify only two
classes, the minority class which is oversampled until
it is balanced with the majority class.
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Figure 2. Binarization One-Vs-One (OVO)

Table 2. Subsets obtained with the OVA technique

Subset Minority Majority
class class

SGB1 20 109
SGB2 37 92
SGB3 59 70
SGB4 13 116

A total of 10 binary datasets were obtained apply-
ing the two binarization techniques. Table 2 shows the
4 datasets created with the OVA technique, and Table
Tabla 3 shows the 6 binary datasets created with the
OVO technique. The first column shows the subsets
obtained with binarization technique. The second col-
umn contains the number of instances that constitute
the minority class. The third column shows the number
of instances in the majority class. It may be observed
that the OVA technique has a greater data unbalance
between the minority class and the majority class, with
respect to the OVO technique.

Aplicando las dos técnicas de binarización obtuvi-
mos un total de 10 datasets binarios. En la Tabla 2

se muestran los 4 dataset creados con la técnica OVA
y en la Tabla 3 se muestran los 6 dataset binarios
creados con la técnica OVO. En la primera columna
se muestran los subsets obtenidos con la técnica de
binarización. En la segunda columna se observa el
número de instancias que forman la clase minoritaria.
La tercera columna muestra el número de instancias
que integran la clase mayoritaria. Podemos observar
que la técnica OVA tiene un mayor desbalanceo de
datos entre la clase minoritaria y la clase mayoritaria
respecto a la técnica OVO.

Table 3. Subsets obtained with the OVO technique

Subset Minority Majority
class class

SGB1 20 37
SGB2 20 59
SGB3 13 20
SGB4 37 59
SGB5 13 37
SGB6 13 59

As a second step, each of the 10 subsets were di-
vided. The data were split in 2/3 for training and the
remaining 1/3 for testing. In the following, three over-
sampling algorithms (ROS, SMOTE and ADASYN)
were applied to the minority class in the training data,
until balancing it with the majority class. The testing
data were used to measure the performance of the
models obtained.
Table 4. Results of the balanced subsets applying over-
sampling methods to the minority class for OVA

Subset Data A Data B Class a Class b
SGB1 14 59 73 73
SGB2 25 37 61 62
SGB3 40 7 47 47
SGB4 9 69 78 78

Datos A: Unbalanced training data.
Datos B: Data generated with SMOTE, ROS and ADASYN.
Clase a: Balanced minority class.
Clase b: Original majority class.

Table 4 shows the 4 balanced subsets for the OVA
technique. Table 5 shows the 6 balanced subsets for the
OVO technique. The first column shows the subsets of
the binarization technique. The second column shows
the minority class with the number of instances that
constitute it. The third column shows the number of
instances that were generated for each oversampling al-
gorithm. Columns 4 and 5 show the balanced minority
class and majority class, respectively.

The next step was obtaining the predictive models
applying three classification algorithms (C4.5, SVM
and JRip) to the 10 balanced subsets. It were con-
ducted 60 independent runs calculating the Area Un-
der the Curve (AUC) for the 10 subsets. The predictive
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models are the result of the average of the AUCs for
the 60 runs. On the other hand, the same procedure
was carried out using the unbalanced subsets to obtain
predictive models with unbalanced data.

Table 5. Results of the balanced subsets applying over-
sampling methods to the minority class for OVO

Subset Data A Data B Class a Class b
SGB1 14 9 23 23
SGB2 14 26 40 40
SGB3 9 5 14 14
SGB4 25 15 40 40
SGB5 9 16 25 25
SGB6 9 31 40 40

Datos A: Unbalanced training data.
Datos B: Data generated with SMOTE, ROS and ADASYN.
Clase a: Balanced minority class.
Clase b: Original majority class.

The last step was to compare the performance of
the models obtained with balanced data, with the mod-
els obtained with unbalanced data. The Wilcoxon sta-
tistical test was used to know if there is a statistically
significant difference between the models, provided
that balanced models have outperformed unbalanced
models. A significance value 0.05 was utilized.

The experiments were conducted in the R soft-
ware, designed for statistical analysis. The R Studio
version 1.2.1335 was utilized as integrated develop-
ment environment. The packages used for balancing
the data were: unbalanced for the ROS algorithm [25],
DMwR for the SMOTE algorithm [26] and UBL for
the ADASYN algorithm [27]. RWeka 0.4-39 [28] was
used for the classification algorithms C4.5 and JRip,
and 071 1.7-0 [29] was used for the SVM classifier.

The linear SVM classifier was optimized through
the tune function, assigning values of 0.001, 0.01, 0.1,
1, 10, 50, 80, 100 for the parameter C. The JRip and
C45 classifiers do not require optimization of hyperpa-
rameters.

4. Results and Discussion

Tables 6 and 9 show the results of the predictive mod-
els obtained. Three balancing methods (ROS, SMOTE
and ADASYN) were applied. Six unbalanced subsets
obtained were oversampled with the OVO binarization
technique, and four subsets with the OVA binarization
technique. Each value is the average of the results ob-
tained through 60 runs. The classifiers C4.5, SVM and
JRip were applied once the training set was balanced.
The models were evaluated using the ROC metrics.
The Wilcoxon statistical test was applied to the bal-
anced models against the unbalanced models, when the
balanced models outperformed the unbalanced models,
with the objective of knowing if the performance of

the balanced models obtained a statistically significant
difference.

The structure of the Tables is the following: the
first column shows the subsets obtained by means of
the OVO and OVA binarization techniques, the GBS
subtypes that constitute it, as well as the number of in-
stances for each subtype. The second column shows the
three classifiers used to obtain the predictive models
for each subset. The third column shows the results of
the predictive models using unbalanced data. Columns
4, 5 and 6 show the models obtained using balanced
data applying three oversampling techniques (ROS,
SMOTE and ADASYN). It is also observed that the
values in bold letter are the predictive models which,
besides outperforming unbalanced models, obtained a
statistically significant difference. Table 6 shows the
results of the 72 predictive models obtained using the
OVO binarization technique.

Of these models, 18 were created with unbalanced
data and 54 were obtained using balanced data apply-
ing the three oversampling methods. It was found that
32 balanced models could not outperform the unbal-
anced models. Other 15 balanced models outperformed
the unbalanced models, but no statistically significant
difference was found. On the other hand, 7 balanced
models outperformed the unbalanced models, and in
addition they had a statistically significant difference.

The best results were achieved with the subset
GBS6, obtaining 3 models with statistically signifi-
cant difference. On the other hand, the subsets GBS2
and GBS4 had 2 models each with statistically signifi-
cant difference. The subsets GBS1, GBS3 and GBS5
exhibited the worst performance with respect to the
unbalanced models, since a statistically significant dif-
ference was not found in any of them.

With respect to the balancing methods, Table 7
shows the results of the ranking obtained for each
method. These results were obtained assigning a po-
sition to each method depending on its performance
with each subset. For every row, a value is assigned to
each oversampling method. In the first row, a value
of 1 is assigned to SMOTE, since it obtained the best
performance. A value of 2 was assigned to ROS since
it obtained the second-best performance, and finally
the value of 3 is assigned to ADASYN because it was
the method with the worst performance. This opera-
tion is performed for every row. Subsequently, all the
values for each method are added and divided by the
number of rows to obtain the average. For example,
SMOTE obtained the first place 5 times, the second
place 6 times, the third place 5 times and the fourth
place 2 times. The sum of these values is 40, which is
divided by the number of rows in the table, 18 for this
case. The result is 2.222, which holds number 1 in the
ranking [30] because it is the lowest average.

For OVO, the SMOTE algorithm was the balancing
method with the best performance, with an average



28 INGENIUS N.◦ 25, january-june of 2021

Table 6. Table of results of the predictive models applying ROS, SMOTE and ADASYN to oversample the minority
class.

Unbalanced Balancing Balancing Balancing
Subset Classifier data applying applying applying

ROS SMOTE ADASYN
GBS1 C4.5 0.9604 0.9514 0.9576 0.9292
AIDP-AMAN SVM 0.9576 0.9465 0.9618 0.9486
20-37 JRip 0.9563 0.9507 0.9403 0.9396
GBS2 C4.5 0.8585 0.8160 0.8551 0.8529
AIDP-AMSAN SVM 0.8472 0.8306 0.8333 0.8484
20-59 JRip 0.8260 0.8178 0.8549* 0.8545*
GBS3 C4.5 0.8132 0.8111 0.7965 0.7854
AIDP-MF SVM 0.6556 0.6340 0.6535 0.6792
20-13 JRip 0.8556 0.8493 0.7382 0.8396
GBS4 C4.5 0.9258 0.9093 0.9093 0.8897
AMAN-AMSAN SVM 0.8760 0.8692 0.8827 0.8845
37-59 JRip 0.8782 0.9059* 0.9065* 0.8877
GBS5 C4.5 0.8736 0.8826 0.8868 0.8486
AMAN-MF SVM 0.8806 0.8729 0.8847 0.8910
37-13 JRip 0.8854 0.8958 0.8889 0.8833
GBS6 C4.5 0.8007 0.8411* 0.7839 0.8209
AMSAN-MF SVM 0.7089 0.7600* 0.7534 0.7746*
59-13 JRip 0.8580 0.8561 0.8720 0.8264
The values are the average of 60 runs of the ROC curves using OVO.

score of 2.2222. The algorithms ADASYN and ROS
held the second place, because both obtained the same
average score of 2.7222. With respect to the classifiers,
Table 8 shows that the JRip classifier obtained the best
performance with an average score of 1.6667. The C4.5
classifier obtained the second place with an average
score of 1.8333. At last, the SVM classifier obtained
the worst performance with an average score of 2.500.

Table 7. Results of the ranking by balancing method for
OVO

Method Ranking Average score
SMOTE 1 2.2222
ADASYN 2 2.7222
ROS 2 2.7222

Table 9 shows the results of 48 predictive mod-
els, obtained using the OVA binarization technique.
Among these, 12 models were created with unbalanced
data and 36 were obtained using balanced data apply-
ing three oversampling methods. It was found that 15
balanced models could not outperform the unbalanced
models; 9 balanced models outperformed the unbal-
anced models, but no statistically significant difference
was found. On the other hand, 12 balanced models
outperformed the unbalanced ones, and besides had a

statistically significant difference.

Table 8. Results of the ranking by classifier for OVO

Classifier Ranking Average score
JRip 1 1.6667
C4.5 2 1.8333
SVM 3 2.5000

The best performances were obtained with the sub-
sets GBS1 and GBS4. In the subset GBS1, 8 balanced
models improved the unbalanced models, of which 5
models obtained a statistically significant difference. In
the GBS4 subset, 6 balanced models outperformed the
unbalanced models, of which 5 models obtained a statis-
tically significant difference. With the subset GBS2, 5
balanced models outperformed the unbalanced models,
but only 2 models obtained a statistically significant
difference. In the SGB3 subset it performed the worst.
Only 3 balanced models exceeded the unbalanced data,
without finding a statistically significant difference.

Table 10 shows the results of the ranking for the
balancing methods applying the OVA binarization
technique. The SMOTE algorithm obtained the best
performance with an average score of 1.9167, hold-
ing the first place. The ADASYN algorithm obtained
the second place, with an average score of 2.1667. At
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Table 9. Table of results of the predictive models applying ROS, SMOTE and ADASYN to oversample the minority
class

Unbalanced Balancing Balancing Balancing
Subset Classifier data applying applying applying

ROS SMOTE ADASYN
GBS1 C4.5 0.7894 0.7873 0.8042 0.8162*
AIDP-ALL SVM 0.7162 0.7262 0.7750* 0.7722*
20-109 JRip 0.7826 0.7921 0.8102* 0.8215*
GBS2 C4.5 0.8729 0.8653 0.8900 0.8949
AMAN-ALL SVM 0.8564 0.8489 0.8490 0.8871*
37-92 JRip 0.8608 0.8513 0.8699 0.8949*
GBS3 C4.5 0.8723 0.8455 0.8795 0.8493
AMSAN-ALL SVM 0.7948 0.7982 0.7881 0.7827
59-70 JRip 0.8470 0.8358 0.8442 0.8536
GBS4 C4.5 0.7808 0.7806 0.8951* 0.7331
MF-ALL SVM 0.6464 0.7590* 0.7516* 0.6991*
13-116 JRip 0.8319 0.8440 0.8826* 0.7882
The values are the average of 60 runs of the ROC curves using OVA.

last, ROS was the balancing algorithm with the worst
performance, holding the third place with an average
score of 3.0833.

With respect to the classifiers, the results of the
ranking are observed in Table 11. The C4.5 classifier
obtained the first place with an average score of 1.2500.
The JRip classifier ended up in the second place, with
an average score of 1.500. The third place was obtained
by the SVM classifier, with an average score of 2.7500.

Table 10. Results of the ranking by balancing method for
OVA

Method Ranking Average score
SMOTE 1 1.9167
ADASYN 2 2.1667
ROS 3 3.0833

The OVA binarization technique obtained the best
results. A total of 36 predictive models were obtained
with balanced data. Among these, 12 predictive mod-
els obtained a statistically significant difference. The
SMOTE algorithm was the balancing method with the
best results. The JRip classifier was the best algorithm,
according to the ranking.

Table 11. Results of the ranking by classifier for OVA

Method Ranking Average score
C4.5 1 1.2500
JRip 2 1.5000
SVM 3 2.7500

The OVA binarization technique obtained the worst

performance. A total of 54 predictive models were ob-
tained with balanced data, of which 7 predictive mod-
els achieved a statistically significant difference. The
ADASYN algorithm obtained the best performance as
oversampling method. The C4.5 classifier obtained the
best performance, since it obtained the lowest average
score.

5. Conclusions

In this research work, three oversampling algorithms
(ROS, SMOTE and ADASYN) were explored, with
the objective of knowing which obtains the best perfor-
mance; in addition, to know if balancing the original
dataset improves the performance of the predictive
models obtained with unbalanced data. These experi-
ments were conducted with a real dataset of patients
diagnosed with some subtype of GBS. Initially, binary
subsets were created applying two techniques (OVO
and OVA) to the original dataset. It was obtained
10 subsets divided in: 6 subsets with the OVO tech-
nique, and 4 subsets with the OVA technique. Each
subset was split into 66% of the data for training and
34% of the data for testing. The minority classes of
the training subsets were oversampled applying ROS,
SMOTE and ADASYN, with the purpose of balancing
the minority class with the majority class. Once the
subsets were balanced, three classifiers were applied:
C4.5, JRip and SVM. The results are the average of
60 runs of the ROC curve. Wilcoxon test was applied
to the predictive models obtained with balanced data
that outperformed the models with unbalanced data,
to know if there is a statistically significant difference
between them.
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The OVA binarization technique obtained the best
result compared to the OVO technique. Applying the
OVA technique, 36 predictive models were obtained
with balanced data, of which 12 had a statistically
significant difference. The best algorithm for balanc-
ing the data was SMOTE with respect to ROS and
ADASYN. The SMOTE algorithm improved the per-
formance of the predictive models according to their
oversampling features. SMOTE adds instances to the
minority class, extrapolating new instances instead of
duplicating them, as it is done by the ROS algorithm.
The ROS algorithm copies instances of the minority
class and adds them randomly, duplicating informa-
tion that may confuse the classifiers. On the other
hand, ADASYN is a variant of SMOTE which adds in-
stances to the minority class that are difficult to learn,
specially the ones located in the decision boundary;
this approach may not be enough information for the
classifier to identify the classes and improve the re-
sult. The C4.5 classifier obtained the best performance
according to the average score for OVO.

The results demonstrate that balancing the data
improves the performance of the predictive models
obtained with unbalanced data. On the other hand,
using automatic learning algorithms in disease diag-
nosis problems is feasible, and may contribute to the
identification of the GBS subtype that a patient gets.
As future works, hybrid oversampling and downsam-
pling techniques will be explored, in addition to the
use of other classifiers.
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