Diseño y construcción de un reactor discontinuo con recirculación externa para obtener biodiésel a partir de aceite de fritura en condiciones subcríticas

Contenido principal del artículo

Cristian Fabian Pérez https://orcid.org/0000-0003-4031-5464
Diego Núñez-Núñez http://orcid.org/0000-0001-5248-4084
Herminia Sanaguano-Salguero https://orcid.org/0000-0002-2885-1515
Luis Sánchez-Quinchuela https://orcid.org/0000-0002-4238-7376

Resumen

Se diseña y construye un reactor discontinuo para obtener biodiésel a partir de aceite de fritura en condiciones subcríticas con la intención de reducir el tiempo de reacción al mínimo posible. El proceso de diseño se centra en la selección del material y la verificación de su resistencia mediante un análisis FEM a partir de un diseño experimental DOE. Se consideran tres niveles de presión, temperatura y espesor de pared, respectivamente, y un factor categórico material a dos niveles. Los resultados obtenidos permiten determinar que el material apropiado para la manufactura del reactor es acero inoxidable 304 con un factor de seguridad de diseño de 1. Para el proceso de construcción del sistema es necesario también la selección de todos los componentes complementarios. Las pruebas finales de funcionamiento muestran que es posible obtener el biocombustible en el reactor discontinuo con un grado de conversión 88 % de manera segura en un rango de 5 a 8 minutos.
Abstract 42 | PDF Downloads 17 PDF (English) Downloads 3

Citas

[1] Y. Ma and Y. Liu, “Chapter 21 - biodiesel production: Status and perspectives,” in Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second Edition), second edition ed., ser. Biomass, Biofuels, Biochemicals, A. Pandey, C. Larroche, C.-G. Dussap, E. Gnansounou, S. K. Khanal, and S. Ricke, Eds. Academic Press, 2019, pp. 503–522. [Online]. Available: https://doi.org/10.1016/B978-0-12-816856-1.00021-X
[2] L. Faba, E. Díaz, and S. Ordóñez, “Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 273–287, 2015. [Online]. Available: https://doi.org/10.1016/j.rser.2015.06.020
[3] J. Xu, G. Xiao, Y. Zhou, and J. Jiang, “Production of biofuels from high-acid-value waste oils,” Energy & Fuels, vol. 25, no. 10, pp. 4638–4642, 2011. [Online]. Available: https://doi.org/10.1021/ef2006723
[4] M. Mohammadi, G. D. Najafpour, H. Younesi, P. Lahijani, M. H. Uzir, and A. R. Mohamed, “Bioconversion of synthesis gas to second generation biofuels: A review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 9, pp. 4255–4273, 2011. [Online]. Available: https://doi.org/10.1016/j.rser.2011.07.124
[5] F. A. Avellaneda Vargas, “Producción y caracterización de biodiésel de palma y de aceite reclicado mediante un proceso batch y un proceso continuo con un reactor helicoidal,” 2010. [Online]. Available: https://bit.ly/3jqIgdX
[6] Y. Wang, P. L. Shiyi Ou, and Z. Zhang, “Preparation of biodiesel from waste cooking oil via two-step catalyzed process,” Energy Conversion and Management, vol. 48, no. 1, pp. 184–188, 2007. [Online]. Available: https://doi.org/10.1016/j.enconman.2006.04.016
[7] Y. Zhang, M. A. Dubé, D. D. McLean, and M. Kates, “Biodiesel production from waste cooking oil: 2. economic assessment and sensitivity analysis,” Bioresource Technology, vol. 90, no. 3, pp. 229–240, 2003. [Online]. Available: https://doi.org/10.1016/S0960-8524(03)00150-0
[8] S. Zheng, M. Kates, M. Dubé, and D. McLean, “Acid-catalyzed production of biodiesel from waste frying oil,” Biomass and Bioenergy, vol. 30, no. 3, pp. 267–272, 2006. [Online]. Available: https://doi.org/10.1016/j.biombioe.2005.10.004
[9] A. Srivastava and R. Prasad, “Triglyceridesbased diesel fuels,” Renewable and Sustainable Energy Reviews, vol. 4, no. 2, pp. 111–133, 2000. [Online]. Available: https://doi.org/10.1016/S1364-0321(99)00013-1
[10] B. H. Pedro, A. S. John, and G. Cano, “Estudio experimental de las variables que afectan la reacción de transesterificación del aceite crudo de palma para la producción de biodiesel,” Scientia et Technica, vol. 1, no. 24, ene. 2004. [Online]. Available: https://doi.org/10.22517/23447214.7323
[11] B. R. Moser, Biodiesel Production, Properties, and Feedstocks. New York, NY: Springer New York, 2011, pp. 285–347. [Online]. Available: https://doi.org/10.1007/978-1-4419-7145-6_15
[12] A. da Silva César, D. E. Werderits, G. L. de Oliveira Saraiva, and R. C. da Silva Guabiroba, “The potential of waste cooking oil as supply for the brazilian biodiesel chain,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 246–253, 2017. [Online]. Available: https://doi.org/10.1016/j.rser.2016.11.240
[13] A. Villabona Ortiz, R. Iriarte Pico, and C. Tejada Tovar, “Alternativas para el aprovechamiento integral de residuos grasos de procesos de fritura,” Teknos revista científica, vol. 17, no. 1, pp. 21–29, jul. 2017. [Online]. Available: https://doi.org/10.25044/25392190.890
[14] Gobierno de España. (2020) Ministerio de Transición Ecológica y el Reto Demográfico. [Online]. Available: https://bit.ly/37zY23X
[15] W. D. Callister Jr. and D. G. Rethwisch, Materials science and engineering: an introduction. John Wiley & Sons, Inc., 2018. [Online]. Available: https://bit.ly/3oo2Krl
[16] H. A. González and D. H. Mesa, “La importancia del método en la selección de materiales,” Scientia Et Technica, vol. X, pp. 175–180, 2004. [Online]. Available: https://bit.ly/37EHrMs
[17] R. V. Rao, “A material selection model using graph theory and matrix approach,” Materials Science and Engineering: A, vol. 431, no. 1, pp. 248–255, 2006. [Online]. Available: https://doi.org/10.1016/j.msea.2006.06.006
[18] M. F. Ashby and K. Johnson, Materials Selection in Mechanical Design. Elsevier Ltd., 2016. [Online]. Available: https://doi.org/10.1016/C2009-0-25539-5
[19] M. F. Ashby, H. Shercliff, and D. Cebon, Materials: engineering, science, processing and design. Butterworth-Heinemann, 2018. [Online]. Available: https://bit.ly/3dSpRW4
[20] T. E. Tezduyar and Y. J. Park, “Discontinuitycapturing finite element formulations for nonlinear convection-diffusion-reaction equations,” Computer Methods in Applied Mechanics and Engineering, vol. 59, no. 3, pp. 307–325, 1986. [Online]. Available: https://doi.org/10.1016/0045-7825(86)90003-4
[21] W. F. Ramírez, Computational methods for process simulation. Butterworth-Heinemann, 1997. [Online]. Available: https://bit.ly/3mhsfc3
[22] A. Chakrabarty, S. Mannan, and T. Cagin, Multiscale Modeling for Process Safety Applications. Butterworth-Heinemann, 2015. [Online]. Available: https://bit.ly/2HujBbc
[23] W. B. J. Zimmerman, Process modelling and simulation with finite element methods. World Scientific, 2004. [Online]. Available: https://bit.ly/2G0a9vM
[24] R. Woodbury, Elements of parametric design. Routledge, 2010. [Online]. Available: https://bit.ly/2Hu2c2s
[25] R. de Luca, P. Fanelli, S. Mingozzi, G. Calabró, F. Vivio, F. Maviglia, and J. You, “Parametric design study of a substrate material for a demo sacrificial limiter,” Fusion Engineering and Design, vol. 158, p. 111721, 2020. [Online]. Available: https://doi.org/10.1016/j.fusengdes.2020.111721
[26] J. Monedero, “Parametric design: a review and some experiences,” Automation in Construction, vol. 9, no. 4, pp. 369–377, 2000. [Online]. Available: https://doi.org/10.1016/S0926-5805(99)00020-5