
Scientific Paper / Artículo Científico

https://doi.org/10.17163/ings.n25.2021.09
pISSN: 1390-650X / eISSN: 1390-860X

Reducing the IoT security breach with
a microservice architecture based on

TLS and OAuth2
Reduciendo la brecha de seguridad del

IoT con una arquitectura de
microservicios basada en TLS y OAuth2

Diego Ordóñez-Camacho1,∗

Received: 15-09-2020, Reviewed: 19-10-2020, Accepted after review: 14-11-2020

1,∗Grupo de Investigación en Informática (GrIInf), Universidad UTE – Ecuador.
Corresponding author ): dordonez@ute.edu.ec. http://orcid.org/0000-0001-8390-634X

Suggested citation: Ordóñez-Camacho, D. (2021). «Reducing the IoT security breach with a microservice architecture
based on TLS and OAuth2». Ingenius. N.◦ 25, (january-june). pp. 94-103. doi: https://doi.org/10.17163/ings.n25.
2021.09.

Abstract Resumen
The Internet of Things has emerged as one of the
most promising trends today. The speed of its adop-
tion, however, has caused certain gaps. Amongst the
most critical there is the one related with the secu-
rity of the systems involved. This project addressed
the security problem in a broad way but focusing on
smart-home environments, where the use of devices
with widely heterogeneous technologies and multiple
services, generates problems with authentication and
with the confidentiality of the data, if the network is
compromised. To tackle these problems, state-of-the-
art technologies such as OAuth2 and TLS, among
others, were put together, along with an architectural
methodology of lightly coupled microservices. As a
result, a secure and broad range IoT architecture was
built, backed up and validated by a reference imple-
mentation. The division into functional layers enables
both fixed and mobile devices and sensors, to get
connected into the system transparently and fluently.
The security scheme structured in three incremen-
tal levels enables a better device integration, at the
level that best adapts to its computing resources and
the type of information it shares. The results show
the flexibility of the solution and the robustness and
novelty of the security scheme presented.

El Internet de las cosas es una de las tendencias
más prometedoras en la actualidad. La rapidez de su
adopción, sin embargo, ha provocado ciertas brechas
críticas en la seguridad de los sistemas involucrados.
Este proyecto analizó el problema de seguridad de una
manera amplia, pero enfocándose en entornos de tipo
hogar inteligente, donde el uso de dispositivos con tec-
nologías ampliamente heterogéneas genera problemas
en la autenticación con múltiples servicios, y en la
confidencialidad de los datos, si la red llegara a verse
comprometida. Para atacar estos problemas, se jun-
taron tecnologías de última generación como OAuth2
y TLS, entre otras, junto a una metodología arquitec-
tural de microservicios de acoplamiento ligero, para
generar una arquitectura IoT segura y de amplio al-
cance, respaldada y validada por una implementación
de referencia. La división en capas funcionales per-
mite que tanto los dispositivos y sensores fijos como
aquellos móviles, puedan acoplarse al sistema de ma-
nera transparente y fluida. El esquema de seguridad
estructurado en tres niveles incrementales permite
que cada equipo pueda integrarse al que mejor se
adapte tanto a sus recursos computacionales como
al tipo de información que debe entregar o consumir.
Los resultados muestran la flexibilidad de la solución
y la solidez del esquema de seguridad presentado.

Keywords: IoT, microservices, software architecture,
systems security, TLS, OAuth.

Palabras clave: IoT, microservicios, arquitectura
de software, seguridad de sistemas, TLS, OAuth

94

https://doi.org/10.17163/ings.n25.2021.09
dordonez@ute.edu.ec
http://orcid.org/0000-0001-8390-634X
https://doi.org/10.17163/ings.n25.2021.09
https://doi.org/10.17163/ings.n25.2021.09


Ordóñez-Camacho. / Reducing the IoT security breach with a microservice architecture based on TLS and

OAuth2 95

1. Introduction

The Internet of Things (IoT) is a technology that is
strongly getting in real life of people. All environments
are involved, namely urban, industrial, office or home.
The interest generated and the speed of adoption of
the technology have produced certain disorder and
informality in the process. Consequently, important
elements were put aside, with the security being one
of the most relevant [1].

In principle, the security of IoT does not have to
be very distant from the security of a typical computer
network. However, in practice there are specific diffi-
culties associated to the environment that further com-
plicate the security problem. Many devices for IoT are
computationally limited, which hinders using various
known robust security mechanisms. The great number
of devices that may be involved in an IoT network,
as well as the exponential increment in the number of
the interactions, aggravates the problem. The diversity
of equipment that are utilized, both in hardware and
software, complicates the possibility of generalizing the
proposed solutions [2]. There is a great variety of meth-
ods and tools that may be utilized to do the job [3]. In
this work, the intention was to utilize those techniques
that, as IoT, set trends and are successfully utilized
in other related fields. Among these techniques, the
most promising ones were the microservices [4] and
OAuth2 [5], which, together with techniques and tech-
nologies perhaps a little more traditional but equally
successful such as TLS [6] and MQTT [7], provided an
appropriate structured environment.

The general objective was to provide the world
of IoT with an alternative architecture that is secure
and adapted to the new technological trends, which
may be utilized in a generic way in multiple situations.
More specifically, special relevance was first given to
generating an alternative for smart homes, and for this
reason the methodology promotes the clear division
of functionalities but caring for the fluid integration
and the availability of tools for creating new utilities.
Second, among the multiple existing security problems,
those related with the authentication of clients when
calling multiple services and with the confidentiality
during the transmission of information were tackled,
especially when the network is compromised. At last,
aware of the hardware restrictions of many devices,
especially sensors, work was carried out to propose an
architecture that considers a hierarchy of various levels
of security, enabling an interconnection adjusted to the
capabilities of various types of equipment, particularly
in environments with heterogeneous technologies.

1.1. Related work

In the ecosystem of IoT devices, these are largely in-
secure, since they are equipment of small size and

with low energy consumption; thus, they also have
limited computational resources. This latter condition
greatly affects when attempting to incorporate in them
complex security systems [8]. At the industrial level,
there are various entrepreneurships applying IoT, for
example, in intelligent transportation [9, 10] and in
agriculture [11]; however, one of the main current ob-
jectives related to home or office automation is the
connected living. This objective requires important
advances in the field of IoT, where it is necessary to
provide answers to problems related with the enor-
mous increment of devices that should interact [12].
A particular case of IoT is the one corresponding to
smart homes, since the implemented solutions are fre-
quently ad-hoc, by the users themselves, who often
attempt to minimize costs and efforts, which in general
results in a minimum and probably inexistent security
scheme [13].

The devices involved require interconnecting in a
many-to-many scheme. In order to ensure the informa-
tion exchange, it is necessary to implement a system for
administration of identities that scales appropriately.
In this sense, Ayed, Boujezza and Riabi [14] propose a
home system which combines EAP, OAuth and DTLS.
Also concerned about the administration of identities
and the access control, Fernández, Alonso, Marco and
Salvachúa [15] confirm the possibilities of OAuth and
propose an architecture compatible with services.

Bugeja, Jacobsson and Davidsson [16] analyze the
IoT security problem for home systems and remark
the importance of avoiding that sensors capture and
distribute, indiscriminately, home data. As an exam-
ple, they present the case of private conversations,
which should not be published. Among the possible ap-
proaches, they mention a service-oriented approach as
a viable alternative to balance between centralization
and distribution of the control; furthermore, the trend
in distributed software and applications seems gener-
ally directed to the use of microservices [17–19]. Delv-
ing deeper in this line, Díaz-Sánchez, Marín-López, Al-
menarez, Arias and Sherrat [20] highlight the benefits
that an architecture based on microservices, addition-
ally based on TLS/PKI, may have on IoT, by making
lighter the development and maintenance tasks, which
is beneficial for both providers and distributors and for
users, while simultaneously reinforcing the interconnec-
tion security. Case studies such as the one by Urien [21]
confirm in a practical manner the possibilities of these
techniques.

Although SSL/TLS is the preferred security and
encryption mechanism in most of the related works,
it is very interesting the proposal of Hoz et al. [22]
when analyzing the complications that there may be
in IoT with TLS at a practical level. Then, such work
analyzes the possibilities of using SSH and highlights
the advantages provided by the data compression in-
cluded in such protocol, which shows to be especially



96 INGENIUS N.◦ 25, january-june of 2021

beneficial when working on HTTP.

Khan, Anwar, Azam, Samea and Shinwari [23]
contribute to the IoT environment with an approach
administered by models, and precisely propose an
OAuth oriented model with a strong UML inclina-
tion. Through transformations, this proposal might be
adapted to a specific architecture, offering the possibil-
ity of being customized to the required environment.
Another interesting proposal of architecture and secu-
rity is the one presented by Kim, Wasicek, Mehne and
Lee [24], where rather than a traditional mechanism
such as the one presented by SSL certification authori-
ties, it would be used an approach to local certification
authorities who more frequently, but also in a lighter
process, would authenticate the IoT equipment. The
proposal by Pahl and Donini [25] may be considered a
middle point between the two proposals just reviewed,
which uses traditional certificates, but with authenti-
cation nearby, rather at the nodes level; they highlight
that this mechanism might be complemented with any
one of authorization, such as OAuth or similar.

Sciancalepore, Piro, Caldarola, Boggia and Bianchi
[26] emphasize on OAuth, but especially with the fea-
ture of concentrating their security architecture in the
gateway equipment, which houses the base station or
sink node, which is in charge of the heavy procedure
of authenticating, authorizing and establishing links
between clients and resources. This approach is very
relevant when it is considered the susceptibility of the
edge computing equipment [27], through which a whole
IoT system may be compromised. One of the security
high points in edge IoT systems is often the one re-
lated to the use of MQTT (or similar protocols), and
consequently various works such as the one by Singh,
Rajan, Shivraj and Balamuralidhar [28] propose im-
provements on such protocol.

2. Materials and methods

For this work it was mainly considered that within the
IoT ecosystem it is necessary to segment the location,
range and access of the equipment involved in two
layers: local or edge and centralized.

In the local layer, schematically represented in Fig-
ure 1, there are those elements that will be invariably
installed in the smart household or office, as it is the
case of sensors, actuators, edge processors such as
gateways and brokers, and user mobile devices.

Figure 1. Components in the local or edge layer of the
IoT system

The sensors are the equipment capable of captur-
ing physical phenomena, virtual events or periodic
signals. Those sensors with the necessary capability
may communicate directly with the central broker;
otherwise they will interact with equipment in the
edge processing subsystem. The sensors will be static,
when emitting a constant signal that in general would
be used by mobile equipment moving around the en-
vironment as Bluetooth beacons for positioning. The
dynamic sensors will capture measurements from the
environment, which will vary depending on the environ-
mental conditions, such as luminescence, temperature,
humidity, among others.

The actuators will enable the interaction with hard-
ware or software, generating events or actions. They
will receive instructions either directly from the broker,
or from a preprocessor when necessary. They may be
local, located in the smart environment, such as light
or temperature controllers; they may also be remote
such as those capable of sending instructions, proba-
bly through the network, for a distant equipment, but
controlled from the smart household or office, such as
when it is necessary to send an SMS, mail or tweet.

At last, this layer considers the preprocessing equip-
ment, which may be also called processors or edge
brokers. They capture raw information coming from
the sensors, to resend it to the central broker or to the
actuator when the sensor is not capable. The informa-
tion could be sent as received by the sensor or could be
preprocessed and send the result. This equipment may
be Raspberry Pi or small computers such as tablets.

In the centralized layer, shown in Figure 2, it is
considered the equipment in charge of the general coor-
dination of all the components, and it is considered that
three subsystems are necessary: administration, pro-
cessing and persistence. These subsystems are linked
with each other and also with the edge layer through
a centralized broker.



Ordóñez-Camacho. / Reducing the IoT security breach with a microservice architecture based on TLS and

OAuth2 97

Figure 2. Components in the centralized layer of the IoT
system

The administration subsystem defines the parame-
ters, and the configuration of the system presents the
web interfaces so that administrative users interact
with the whole system. In the case that the central
processing is performed with various equipment, it also
manages the resulting cluster. Then, a main part in
this subsystem is the monitoring, which will enable all
type of users to review relevant information, preferably
by means of dashboards and statistical charts.

For all heavy information processing, the corre-
sponding subsystem takes the data collected from the
broker and process them as defined by the applications
or specific requirements of the IoT system. In general,
the processing will be divided depending, mainly, on
the urgency of the processing, in: real-time, which pro-
cesses the data in a continuous flow, as they arrive from
the sensors; in memory, which collects the information
in the cluster memory, depending on the needs, and
process it in small batches; and batch, which generally
interacts with the storage system, for those processings
where the amount of data is larger than the capacity
of the living memory of the system.

The information generated by the IoT system is
directed to the persistence module, which safeguards
the data for further use either in model development
or in the generation of reports. Various alternatives
should be considered, depending on the size of the
information and the way it will be accessed. At least
it is necessary to consider an HDFS support, one of
database both SQL and NoSQL, and in case that the
system evolution requires it, a support in the cloud.

At last, the whole system, and more specifically
the edge and centralized layers, should connect to each
other and exchange information, which is achieved by
means of a central broker, in charge of handling all
the message queues thus reducing the complexity of
the interactions.

3. Results

The resulting architecture design mainly considered
the need of ensuring the exchange of information of
all system components, always seeking to guarantee
the speed of calculation. These elements require to rec-

oncile characteristics that are often incompatible. For
example, more robust cryptography systems may re-
quire more computational power than the one provided
by many light devices, such as sensors.

The final architecture designed, implemented and
tested, is the one sketched in Figure 3, which will be
described in detail in the following. First, the compo-
nents involved are pointed out, and then the security
functionality is presented in a general way.

Figure 3. Secure architecture

3.1. Components

This section will attempt to define in a general way
the types of components or equipment involved in the
architecture proposed in Figure 3, which basically con-
sists of the elements in charge of the registry services
(Registry), the equipment providing authentication ser-
vices for clients and users (UAA) and then, in a broad
manner, all equipment providing general services, as
well as all client equipment (Services and Clients). Al-
though for simplicity reference will only be made to
the components in singular, the architecture considers
that, for each category or type of component, especially
the services, these can work in clusters.

3.1.1. Registry services (REG)

The main task of the REG is to enable the services
to register by means of IP and alias (service name),
and make them available to the clients, which will
connect to the REG to request information with which
they will finally connect to the services of interest.
The REG also provides a load balancing service, when
detecting that a service is registered in cluster (various
equipment with the same service).

The first contact point for all remaining compo-
nents of the system, whether they are services or clients,
is the REG, which requires a static IP; however, all
the remaining components of the system may work
with dynamic IPs, by means of a DNS.



98 INGENIUS N.◦ 25, january-june of 2021

3.1.2. Authentication services (UAA)

The initials UAA stand for User Authentication and
Authorization. Within the proposed architecture, it
basically provides the authentication service, which
works under OAuth2. The UAA stores the data of all
clients in the system, including their roles; with this
information the UAA user services may also authorize
or not the use of certain elements. Any component may
connect with the UAA for requesting an access token,
by means of client credentials (user and password).
In a similar manner, any component of the system
may request to the UAA the validation of the token
received by a third party.

3.1.3. Generic services (SRV) and client equip-
ment (CLI)

The last category of components gathers all other ser-
vices and all clients. In general, these components will
interact with each other after being registered/authen-
ticated in the system with the help of the REG and
the UAA. The services may be very diverse, and it
is in the hands of the system administrator to decide
which will be required. However, in the proposed IoT
architecture, some are fundamental, and for this reason
they have been implemented in the test system and
will be mentioned in the following.

To enable interconnectivity and, at the same time,
reduce its complexity, it was implemented a messaging
service, which in the methodology is represented by the
central broker (Figures 1 and 2). The broker is capable
of receiving and distributing all messages circulating
in the system, and it basically enables that in general
all services and clients may establish a unique connec-
tion with the broker, to deposit messages and retrieve
them from one or more queues. This broker may work
with any communication protocol, or a combination
of them. However, since in the IoT world, at least at
present, the most widely used protocol is the Message
Queuing Telemetry Transport (MQTT), it is the one
that is used in the implementation presented here.

Other service implemented for testing the concept
of the architecture is the one related to the persistence,
as a necessary support to further implement batch pro-
cessing. For this it was implemented a transit service
that takes the information from the broker and trans-
fers it to a Hadoop cluster [29], where different types
of tools from such ecosystem may be used for informa-
tion treatment. One of the cases that was worked here,
given the nature of the IoT information, especially the
one coming from the sensors, was the one of time series.
For this purpose, two data series services were built,
thus providing graphing and trend analysis, among
others.

With respect to the clients, all sensors are consid-
ered here, which deliver information to the system, the

actuators, which react with the environment thanks to
the information of the system, and all those devices,
mobile or desktop, that enable the user to enter to
configure the system, collect processed information, or
even also acting as sensors and actuators. For example,
a mobile device may deliver information about the
activity of the user or automatically send tweets.

3.2. Security schemes

The system security architecture consists of three fun-
damental scenarios: basic scheme, to which all elements
should stick to in their transactions, unless it is speci-
fied otherwise; light scheme, generally used only when
starting a work process in the system; strengthened
scheme, for trusting relationships between services.

3.2.1. Basic scheme

This is the scheme that the components of the system
will use in their transactions by default. This scheme is
represented in Figure 3 by the dotted line that encom-
passes the system and uses a combination of one-way
TLS plus OAuth2. All services should provide its pub-
lic key infrastructure (PKI) certificate to the clients,
who could thus validate it with the certification au-
thority (CA). Similarly, all clients should provide an
OAuth access token to the services so that they can
validate it with the authentication service.

In the proposed scheme, the use of the TLS is es-
pecially necessary to be able to encrypt the content of
the information being transmitted. It is only utilized
on the side of the services to limit as much as possible
the overload that may occur, especially, at the adminis-
tration level (but also at the resources and processing
levels), use it in all components. The security gap
that appears is compensated with the use of OAuth2,
through which the clients are, in turn, validated by
the services.

3.2.2. Light scheme

This is a scheme that may be considered insecure, and
for this reason it is only provided for those cases where
an access token may not be yet obtained, or when it
is considered redundant to request it.

Now, two cases exist in the working environment
that implement this scheme. When the components
enter the system to be able to start their transactions,
it is in general necessary to have the OAuth token,
but since the IP address of the UAA server may have
changed, the first step is to contact the REG to request
the updated IP address. For this connection the client
does not yet have the token, and for this reason it is
not possible to work with the basic scheme. The second
implementation of this scheme was applied to avoid
unnecessary redundant connections and occurs when
the service receives the token and should validate it



Ordóñez-Camacho. / Reducing the IoT security breach with a microservice architecture based on TLS and

OAuth2 99

with the UAA. Since the service was already initially
validated with the UAA, is it prevented to duplicate
this step.

It is for this type of cases that the light scheme
comes into play. The service provides its PKI with
which the communication is encrypted, but the client
is not obliged to validate it (although it is recom-
mended to do so), the service provides an access point
«insecure» for the client, who does not require the
token. This is the scheme provided by REG exclusively
to be able to deliver the data of the UAA.

3.2.3. Strengthened scheme

Similar to the problem worked with in the light scheme,
sometimes two services require to interconnect, but at
least one of them (who acts as client) is not capable of
obtaining its access token. Since this is about services,
it is not convenient to open an insecure channel as it is
done in the light scheme. Then, to maintain the secu-
rity standard it was decided to implement a two-way
TLS scheme, which is possible without incurring in
much overload, since as they are services, they anyway
have their PKI. In addition, in general the services will
be run in equipment with larger processing capacity.

This implementation also requires a dedicated chan-
nel to be able to execute this type of validation, and
the example is given by the communication between
the REG and the UAA. The UAA is the one that
provides the access tokens, and therefore it should
validate itself which would generate a security hole.
Then, the REG opens a dedicated channel so that at
any moment a UAA service may register that way. As
the UAA connects with the REG, they exchange their
corresponding PKIs, validating each other by TLS,
without reducing the security standard of the system.

3.3. Functionality

Referring again to Figure 3, the dotted line represents
the scope of the basic security scheme, which encom-
passes the whole system. Numbers 1, 2 and 3 may
be seen inside, enclosed in circles, which indicate the
recommended starting sequence to guarantee the flu-
ency of the service. In practice, at least the services
have in their base library the functionality to retry
the connection when this starting sequence is not fol-
lowed. However, this may be susceptible to unnecessary
delays.

First the registry server REG is started, which
will provide a central access point for acquiring the
contact information for the other services: all services
will register in the REG their corresponding IP and
alias (name of service) and all clients will look for here,
by alias, the IP of the required service to be able to
connect to it. REG offers three access points, each
of which should handle a different security mode: the

first, light, enables any client to obtain the UAA IP
without additional security; the second mode, strength-
ened, enables the connection of the UAA by means of
a two-way TLS; the last, basic, which requires OAuth2,
enables clients to request information about services,
and services to register their contact information.

Second, an authentication server (UAA) is started,
which will provide OAuth2 credentials to the clients.
A reinforced security mechanism is used between the
UAA and the REG, with two-way TLS validation.
The UAA connects with the REG, as well as with
any other service, to deliver its IP and alias and thus
being available for the whole system. Once these two
services, REG and UAA, are online, all the remaining
components, services and clients may start their work.

Then, at last, as point 3, any other component,
either service or client, will proceed as follows: first,
using the light security scheme, they will connect with
the REG to request the IP address of the UAA; they
establish the connection with the UAA and request the
access token, using their client credentials. With the
access token at hand the basic security scheme may be
already utilized and, in the case of services, they will
register with the REG, delivering IP and alias, and be
ready to wait for the requests of the clients, or act as a
client of another service, as necessary. In the case of a
client, the next step is using a service, where the basic
security scheme will be applied; it is connected to the
REG and by means of an alias it requests the IP of
the service of interest, to further connect with such
service. The last action becomes that of the services
that receive a request from a client, since in this case
they should, by means of the light scheme, connect
to the UAA and request the validation of the access
token, with which they can serve the request of the
client.

3.4. Implementation and tests

The implementation decision was mainly that each
of the components may be run in a variety of equip-
ment with the lowest interdependency, for which it
was proceeded to work in a microservices architecture
that enables their deployment either as independent
processes, or within a container structure, such as
Docker [30]. For desktop services and clients, it was
used Java with Spring Boot in general. For the central
messaging service, it was decided to work using the
MQTT protocol, and for the development of the broker
the Moquette library [31] was taken as base, which
was modified mainly for adding support for OAuth2.
For the persistence services an HDFS cluster [32] was
used as base in the local network, and time series ser-
vices were built on it which, according to the current
interests of the project, were the more appropriate to
process data coming from the sensors. It was interacted
with OpenTSDB [33] and Prometheus [34].



100 INGENIUS N.◦ 25, january-june of 2021

Regarding clients, it was decided to construct
generic libraries for different types of systems, which
ease the process of developing specific applications. A
Java client library was developed, one for Android mo-
bile devices, one for Arduino MKR [35] and another for
ESP32 [36], the last three based on Eclipse Paho [37].
The Arduino libraries were exclusively oriented for
their use in controllers of sensors and actuators.

The tests of the system were carried out in a con-
trolled office environment. The main equipment was an
RPi 3B+ which acted as a Wi-Fi Gateway, providing
the DNS and NTP services, among others. Controllers
MKR 1010 and ESP32 were simultaneously used, which
permanently received information from temperature,
humidity and noise sensors, such as the DHT11 and
the KY038 [38]. The RPi3B+ also housed the REG,
and UAA services and the MQTT messaging broker.
The persistence services on HDFS, as well as those of
the TSDB were installed in Linux on an i5-4210U with
8 GB of RAM memory. In this last equipment generic
services were also installed for sending and receiving
messages, with which it was verified the fluency of the
interaction. A N9005 was used as mobile client, which
had two functionalities: bobo sensor, sending a great
quantity of random numbers to the system, and light
actuator, notifying every time that the measurements
of the real sensors exceeded particular levels parame-
terized in the app. Figure 4 presents one of the setups
of the test system.

In the experimentation relative to the security tests,
it was decided to suppose that a possible attacker was
already connected to the local network and was po-
tentially in the capacity of making any request and
capturing all the traffic. In the first test, Zap was used
to perform a scanning both active and passive, and
it was verified that the security was maintained (en-
crypted traffic), except in the case (documented in the
architecture) of the light scheme.

Figure 4. Setup for tests: from left to right it is observed
a cluster of 3 Raspberry Pi running all services on Docker;
an ESP8266 monitoring the level of noise with an KY038;
an MKR1010 monitoring ambient temperature with an
DHT11; an N9005 injecting random messages, and a lap-
top monitoring all services.

Then, Wireshark was used for a manual verification,
analyzing the packets by type of connection or scheme,
and it was again validated, as expected, that, except
for the light scheme, all traffic was kept encrypted, as
shown in Figure 5.

Figure 5. Run and traces: from top to bottom, first, a
client sends three simple text messages; then the receiver
obtains the messages and, at last, the Wireshark trace cap-
tures the packages and verifies that, during transit, they
are encrypted.



Ordóñez-Camacho. / Reducing the IoT security breach with a microservice architecture based on TLS and

OAuth2 101

4. Discussion

The process of including complex security schemes in
light IoT devices, is not trivial as stated by Khan and
Salah [8], and this work coincides with this statement.
Two remarkable cases were that managing the TLS
with self-generated certificates for MKR 1010 require
regenerating all the firmware to include the CA, and
it was not possible to carry this out in ESP8266 con-
trollers due to the unavailability, in practice, of open-
source libraries sufficiently complete to guarantee the
expected security level.

In general, the adopted approach retakes the warn-
ings made by Lin and Bergmann [13], and attempts
to provide a sufficiently complete system so that with
minimum technical support it could be implemented
at home, and then directly administered by the user.

Clearly, this exhibits limitations given by the great
variety of types of users that may want to be included
in the IoT. However, the tests carried out indicate that
the heart of the prototype would enable providing this,
if it is possible to include some features in the user
interface, equipment and installers.

This work confirms what was presented by Ayed
et al., [14] and by Fernández et al., [15] regarding the
problem of scaling identities and the benefit that may
be obtained both with OAuth and with a services ap-
proach. Delegating the authentication to a single point,
further trusting in temporary credentials, as enabled
by OAuth2, maintains a light infrastructure of identi-
ties, while the distribution in services provides a great
easiness when replicating and redounding services in a
cluster when the work load of the system requires it.
It is just this services/microservices approach which
enables that working with TLS is not too demanding
at the level of maintenance, as highlighted by Díaz-
Sánchez et al. [20].

This proposal acknowledges the importance that
should be given to the edge equipment at the security
level, and following the line of Shapsough et al. [27]
and of Sciancalepore et al. [26], it especially reinforces
the gateway equipment to further enable implementing
improvements in the MQTT protocol, similar to what
was made by Singh et al. [28] but mainly including the
use of OAuth2 and TLS.

5. Conclusions

This work was motivated by a current urgent need:
to secure the IoT systems, especially those linked to
a home environment, and making it without under-
mining the freedom of access of the user to collect
information and to modify the configuration of the sys-
tem. As it was seen, this need comes from the relative
informality of the IoT, among other things, especially
in the environment of a smart home.

It started with a methodological conception that
stratifies the environment in layers: the one more
closely related with the interaction with the space
through the collection of information and execution of
actions to modify the microenvironment, and the layer
of centralized processing and analysis of information.
Both layers were interrelated with a centralized con-
nection that unifies them also maintaining their light
coupling.

This methodology was oriented to enable an im-
plementation based on microservices, where, besides
avoiding to the extent possible any type of monolithic
structure, it was provided a group of services and li-
braries for clients which ease to a large extent the
generation of new utilities and components. The tests
carried out with the services, clients and sensors gen-
erated under this infrastructure enabled confirming
both the solidity and the relative easiness of use of the
components.

The main point, the security, although it was not
the easiest to implement, after debugging the three
schemes defined for the different types of connection, it
demonstrated being a robust choice, which withstood
the illicit access tests. However, it is worth indicating
that a methodical testing scheme specific for the field
is still pending to be designed and applied, which will
be considered in future works. Nevertheless, it may
be stated that combining TLS, OAuth2 and MQTT
produced the expected results to a large extent.

As main contributions it could be mentioned the
implementation of a solid secure IoT architecture for
households; the stable and fluent combination of at
least three high level technologies for handling security
and an implementation of functional reference that
can be made publicly available for free use.

References

[1] Y. Lu and L. D. Xu, “Internet of things (IoT) cy-
bersecurity research: A review of current research
topics,” IEEE Internet of Things Journal, vol. 6,
no. 2, pp. 2103–2115, 2019. [Online]. Available:
https://doi.org/10.1109/JIOT.2018.2869847

[2] A. Riahi Sfar, E. Natalizio, Y. Challal,
and Z. Chtourou, “A roadmap for security
challenges in the internet of things,” Dig-
ital Communications and Networks, vol. 4,
no. 2, pp. 118–137, 2018. [Online]. Available:
https://doi.org/10.1016/j.dcan.2017.04.003

[3] P. Lea, Internet of Things for Architects: Archi-
tecting IoT solutions by implementing sensors,
communication infrastructure, edge computing,
analytics, and security. Packt Publishing Ltd,
2018. [Online]. Available: https://bit.ly/3oJ1XRl

https://doi.org/10.1109/JIOT.2018.2869847
https://doi.org/10.1016/j.dcan.2017.04.003
https://bit.ly/3oJ1XRl


102 INGENIUS N.◦ 25, january-june of 2021

[4] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis,
and S. Tilkov, “Microservices: The journey so far
and challenges ahead,” IEEE Software, vol. 35,
no. 3, pp. 24–35, 2018. [Online]. Available:
https://doi.org/10.1109/MS.2018.2141039

[5] J. Khan, J. p. Li, I. Ali, S. Parveen, G. a. Khan,
M. Khalil, A. Khan, A. U. Haq, and M. Shahid,
“An authentication technique based on oauth
2.0 protocol for internet of things (IoT) net-
work,” in 2018 15th International Computer
Conference on Wavelet Active Media Technology
and Information Processing (ICCWAMTIP),
2018, pp. 160–165. [Online]. Available: https:
//doi.org/10.1109/ICCWAMTIP.2018.8632587

[6] C. Chan, R. Fontugne, K. Cho, and S. Goto,
“Monitoring tls adoption using backbone and
edge traffic,” in IEEE INFOCOM 2018 -
IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS),
2018, pp. 208–213. [Online]. Available: https:
//doi.org/10.1109/INFCOMW.2018.8406957

[7] F. Izquierdo, M. Ciurana, F. Barcelo, J. Pa-
radells, and E. Zola, “Performance evaluation
of a TOA-based trilateration method to locate
terminals in WLAN,” in 2006 1st Inter-
national Symposium on Wireless Pervasive
Computing, 2006, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/ISWPC.2006.1613598

[8] M. A. Khan and K. Salah, “IoT security:
Review, blockchain solutions, and open chal-
lenges,” Future Generation Computer Systems,
vol. 82, pp. 395–411, 2018. [Online]. Available:
https://doi.org/10.1016/j.future.2017.11.022

[9] J. P. Rojas, J. C. Bustos, and D. Ordóñez
Camacho, “Smart public transportation at
your fingertips,” Enfoque UTE, vol. 8, no. 1,
pp. 122–134, Feb. 2017. [Online]. Available:
https://doi.org/10.29019/enfoqueute.v8n1.143

[10] J. P. Rojas, J. C. Bustos, and D. Ordóñez-
Camacho, “Qbus: Movilidad inteligente para el
usuario de transporte público,” in Proceedings
of the International Conference on Information
Systems and Computer Science, INCISCOS 2016,
2016. [Online]. Available: https://bit.ly/3jZlBpE

[11] E. A. Q. Montoya, S. F. J. Colorado, W. Y. C.
Muñoz, and G. E. C. Golondrino, “Propuesta
de una arquitectura para agricultura de pre-
cisión soportada en IoT,” RISTI - Revista
Iberica de Sistemas e Tecnologias de Infor-
macao, pp. 39–56, 2017. [Online]. Available:
http://dx.doi.org/10.17013/risti.24.39-56

[12] M. Agiwal, N. Saxena, and A. Roy, “To-
wards connected living: 5g enabled internet of
things (IoT),” IETE Technical Review, vol. 36,
no. 2, pp. 190–202, 2019. [Online]. Available:
https://doi.org/10.1080/02564602.2018.1444516

[13] H. Lin and N. Bergmann, “IoT privacy and
security challenges for smart home environments,”
Information, vol. 7, no. 3, p. 44, Jul 2016. [Online].
Available: http://dx.doi.org/10.3390/info7030044

[14] H. Kaffel-Ben Ayed, H. Boujezza, and
I. Riabi, “An idms approach towards pri-
vacy and new requirements in IoT,” in
2017 13th International Wireless Communi-
cations and Mobile Computing Conference
(IWCMC), 2017, pp. 429–434. [Online]. Available:
https://doi.org/10.1109/IWCMC.2017.7986324

[15] F. Fernández, A. Alonso, L. Marco, and
J. Salvachúa, “A model to enable application-
scoped access control as a service for IoT
using OAuth 2.0,” in 2017 20th Conference on
Innovations in Clouds, Internet and Networks
(ICIN), 2017, pp. 322–324. [Online]. Available:
https://doi.org/10.1109/ICIN.2017.7899433

[16] J. Bugeja, A. Jacobsson, and P. Davidsson,
“On privacy and security challenges in smart
connected homes,” in 2016 European Intel-
ligence and Security Informatics Conference
(EISIC), 2016, pp. 172–175. [Online]. Available:
https://doi.org/10.1109/EISIC.2016.044

[17] L. Sun, Y. Li, and R. A. Memon, “An
open IoT framework based on microservices
architecture,” China Communications, vol. 14,
no. 2, pp. 154–162, 2017. [Online]. Available:
https://doi.org/10.1109/CC.2017.7868163

[18] T. Vresk and I. Çavrak, “Architecture of an
interoperable IoT platform based on microser-
vices,” in 2016 39th International Convention
on Information and Communication Technol-
ogy, Electronics and Microelectronics (MIPRO),
2016, pp. 1196–1201. [Online]. Available:
https://doi.org/10.1109/MIPRO.2016.7522321

[19] R. Yu, V. T. Kilari, G. Xue, and D. Yang,
“Load balancing for interdependent IoT mi-
croservices,” in IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications,
2019, pp. 298–306. [Online]. Available: https:
//doi.org/10.1109/INFOCOM.2019.8737450

[20] D. Díaz-Sánchez, A. Marín-Lopez, F. A. Mendoza,
P. A. Cabarcos, and R. S. Sherratt, “TLS/PKI
challenges and certificate pinning techniques
for IoT and M2M secure communications,”
IEEE Communications Surveys Tutorials, vol. 21,

https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/ICCWAMTIP.2018.8632587
https://doi.org/10.1109/ICCWAMTIP.2018.8632587
https://doi.org/10.1109/INFCOMW.2018.8406957
https://doi.org/10.1109/INFCOMW.2018.8406957
https://doi.org/10.1109/ISWPC.2006.1613598
https://doi.org/10.1016/j.future.2017.11.022
https://doi.org/10.29019/enfoqueute.v8n1.143
https://bit.ly/3jZlBpE
http://dx.doi.org/10.17013/risti.24.39-56
https://doi.org/10.1080/02564602.2018.1444516
http://dx.doi.org/10.3390/info7030044
https://doi.org/10.1109/IWCMC.2017.7986324
https://doi.org/10.1109/ICIN.2017.7899433
https://doi.org/10.1109/EISIC.2016.044
https://doi.org/10.1109/CC.2017.7868163
https://doi.org/10.1109/MIPRO.2016.7522321
https://doi.org/10.1109/INFOCOM.2019.8737450
https://doi.org/10.1109/INFOCOM.2019.8737450


Ordóñez-Camacho. / Reducing the IoT security breach with a microservice architecture based on TLS and

OAuth2 103

no. 4, pp. 3502–3531, 2019. [Online]. Available:
https://doi.org/10.1109/COMST.2019.2914453

[21] P. Urien, “Securing the IoT with TLS/DTLS
server stacks embedded in secure elements: An
ePlug usecase,” in 2017 14th IEEE Annual Con-
sumer Communications Networking Conference
(CCNC), 2017, pp. 569–570. [Online]. Available:
https://doi.org/10.1109/CCNC.2017.7983170

[22] J. D. Hoz, J. Saldana, J. Fernández-
Navajas, J. Ruiz-Mas, R. G. Rodríguez, and
F. d. J. M. Luna, “SSH as an alternative
to TLS in IoT environments using HTTP,”
in 2018 Global Internet of Things Summit
(GIoTS), 2018, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/GIOTS.2018.8534545

[23] M. Khan, M. W. Anwar, F. Azam, F. Samea, and
M. F. Shinwari, A Model-Driven Approach for
Access Control in Internet of Things (IoT) Appli-
cations – An Introduction to UMLOA. Commu-
nications in Computer and Information Science,
Springer, 2018, vol. 920. [Online]. Available:
https://doi.org/10.1007/978-3-319-99972-2_16

[24] H. Kim, A. Wasicek, B. Mehne, and E. A.
Lee, “A secure network architecture for the
internet of things based on local authorization
entities,” in 2016 IEEE 4th International Con-
ference on Future Internet of Things and Cloud
(FiCloud), 2016, pp. 114–122. [Online]. Available:
https://doi.org/10.1109/FiCloud.2016.24

[25] M. Pahl and L. Donini, “Securing IoT microser-
vices with certificates,” in NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management
Symposium, 2018, pp. 1–5. [Online]. Available:
https://doi.org/10.1109/NOMS.2018.8406189

[26] S. Sciancalepore, G. Piro, D. Caldarola, G. Bog-
gia, and G. Bianchi, “Oauth-iot: An access
control framework for the internet of things
based on open standards,” in 2017 IEEE
Symposium on Computers and Communications
(ISCC), 2017, pp. 676–681. [Online]. Available:
https://doi.org/10.1109/ISCC.2017.8024606

[27] S. Shapsough, F. Aloul, and I. A. Zualker-
nan, “Securing low-resource edge devices for
IoT systems,” in 2018 International Sympo-
sium in Sensing and Instrumentation in IoT

Era (ISSI), 2018, pp. 1–4. [Online]. Available:
https://doi.org/10.1109/ISSI.2018.8538135

[28] M. Singh, M. A. Rajan, V. L. Shivraj, and
P. Balamuralidhar, “Secure mqtt for internet
of things (IoT),” in 2015 Fifth International
Conference on Communication Systems and Net-
work Technologies, 2015, pp. 746–751. [Online].
Available: https://doi.org/10.1109/CSNT.2015.16

[29] C. Singh and M. Kumar, Mastering Hadoop 3:
Big data processing at scale to unlock unique busi-
ness insights. Packt Publishing, 2019. [Online].
Available: https://bit.ly/37Qi2O9

[30] J. Turnbull, The Docker Book: Containerization
is the new virtualization, 2014. [Online]. Available:
https://bit.ly/3m7nqRY

[31] A. Selva. (2014) Java MQTT lightweight
broker. moquette. [Online]. Available: https:
//bit.ly/3gB82Mw

[32] M. Bhushan, Big Data and Hadoop: Learn by
Example. BPB Publications, 2018. [Online].
Available: https://bit.ly/2W0AmP1

[33] T. Dunning and E. Friedman, Time Series
Databases: New Ways to Store and Access Data,
Edition: 1. Sebastopol. O’Reilly Media, Inc, 2014.
[Online]. Available: https://bit.ly/2W1VnsU

[34] B. Brazil, Prometheus: Up & Running: Infras-
tructure and Application Performance Monitor-
ing. O’Reilly Media, 2018. [Online]. Available:
https://bit.ly/39V80xX

[35] A. Kurniawan, Arduino MKR WIFI 1010 De-
velopment Workshop. PE Press, 2018. [Online].
Available: https://bit.ly/37OEnvD

[36] I. Dogan and I. Ahmet, The Official ESP32 Book.
Elektor International Media, 2017. [Online].
Available: https://bit.ly/2IzEW3G

[37] G. C. Hillar, Hands-On MQTT Programming with
Python: Work with the lightweight IoT protocol
in Python. Packt Publishing, 2018. [Online].
Available: https://bit.ly/33YpdTg

[38] B. Charles, Beginning Sensor Networks with
Arduino and Raspberry Pi. Apress, 2013. [Online].
Available: https://bit.ly/3m5syGj

https://doi.org/10.1109/COMST.2019.2914453
https://doi.org/10.1109/CCNC.2017.7983170
https://doi.org/10.1109/GIOTS.2018.8534545
https://doi.org/10.1007/978-3-319-99972-2_16
https://doi.org/10.1109/FiCloud.2016.24
https://doi.org/10.1109/NOMS.2018.8406189
https://doi.org/10.1109/ISCC.2017.8024606
https://doi.org/10.1109/ISSI.2018.8538135
https://doi.org/10.1109/CSNT.2015.16
https://bit.ly/37Qi2O9
https://bit.ly/3m7nqRY
https://bit.ly/3gB82Mw
https://bit.ly/3gB82Mw
https://bit.ly/2W0AmP1
https://bit.ly/2W1VnsU
https://bit.ly/39V80xX
https://bit.ly/37OEnvD
https://bit.ly/2IzEW3G
https://bit.ly/33YpdTg
https://bit.ly/3m5syGj

	Introduction
	Related work

	Materials and methods
	Results
	Components
	Registry services (REG)
	Authentication services (UAA)
	Generic services (SRV) and client equipment (CLI)

	Security schemes
	Basic scheme
	Light scheme
	Strengthened scheme

	Functionality
	Implementation and tests

	Discussion
	Conclusions

