
Scientific Paper / Artículo Científico

https://doi.org/10.17163/ings.n25.2021.10
pISSN: 1390-650X / eISSN: 1390-860X

Vulnerability analysis with SQLMAP
applied to APEX5 context

Análisis de vulnerabilidades con
SQLMAP aplicada a entornos APEX 5

Esteban Crespo-Martínez1,∗

Received: 14-09-2020, Reviewed: 01-10-2020, Accepted after review: 30-11-2020

1,∗Universidad del Azuay, Ecuador. Corresponding author): ecrespo@uazuay.edu.ec.
https://orcid.org/0000-0002-3061-9045

Suggested citation: Crespo-Martínez (2021). «Vulnerability analysis with SQLMAP applied to APEX5 context».
Ingenius. N.◦ 25, (january-june). pp. 104-113. doi: https://doi.org/10.17163/ings.n25.2021.10.

Abstract Resumen
Databases are usually the main targets of an attack,
specifically for the information that they store, since,
according to Druker, information is power. In this
work vulnerability tests are performed of the database
of an ERP software developed in APEX 5. For this
purpose, FOSS tools are used to test and analyze
vulnerabilities of databases, identifying that sessions
used by ERP based on Oracle APEX are carried
out randomly, and besides are generated again at
particular times. It is therefore concluded that, with
the tests applied and the updates of SQLMAP to
the date of the experiment, it has not been possible
to vulnerate the ERP software with SQL injection
techniques.

Las bases de datos son usualmente los principales
objetivos de un ataque, específicamente por la infor-
mación que en ella reside, ya que, de acuerdo con
Druker, la información es poder. En este trabajo se
realizan las pruebas de vulnerabilidad de la base de
datos de un software ERP desarrollado en APEX 5.
Para ello, se utilizan herramientas FOSS de prueba y
análisis de vulnerabilidades de bases de datos, identi-
ficando que las sesiones que utiliza ERP basada en
Oracle APEX son realizadas de manera aleatoria y
que, además, son nuevamente generadas en determi-
nados momentos. Se concluye que, con las pruebas
aplicadas y las actualizaciones de SQLMAP a la fecha
del experimento, no se ha conseguido vulnerar el soft-
ware ERP con técnicas de inyección SQL.

Keywords: APEX, Data protection, Information sys-
tems evaluation, SQL Injection.

Palabras clave: APEX, evaluación a sistemas de
información, inyección SQL, protección de datos

104

https://doi.org/10.17163/ings.n25.2021.10
ecrespo@uazuay.edu.ec
https://orcid.org/0000-0002-3061-9045
https://doi.org/10.17163/ings.n25.2021.10

Crespo-Martínez / Vulnerability analysis with SQLMAP applied to APEX5 context 105

1. Introduction

Various experts in information security agree that
cyber-attacks are increasingly recurrent, and usually
target web systems, thus altering or putting on risk per-
sonal information [1], especially to web applications [2]
, due to their complexity, extension, high personal-
ization and because they are usually developed by
programmers with little experience in security [3].

It cannot be denied that, in this society of informa-
tion and knowledge, databases contain the gold mine,
which becomes one of the most important strategic
elements of the organization, because from its analysis
and interpretation at the right time it is possible to
project strategies to stay ahead of opportunities and
foresee threats according to the role of the organization
in the society.

The protection of the information started to make
sense when the first computer viruses appeared: they
altered or erased user information, often with the pur-
pose of demonstrating the destructing and creative
capacity of the designer of the malware used to under-
take the attack. The computing context was simpler,
there was no intercommunication between organiza-
tions and systems were limited to operate in a cen-
tralized manner [4]. However, as a result of the boom
of opportunities generated by the appearance of the
Internet, attackers now see data in a different manner.
Damaging or eliminating them does not make sense,
data theft, copy or seizure are aspects that become
the new targets.

Ojagbule et al. [5] mention that, today, there are
more than one billion websites, and that many of them
are developed by content managers such as Drupal,
Joomla or WordPress, and that, according to Moham-
madi y Namadchian [6], they contain important data.

According to Ojagbule et al. [5] and Kruegel et
al. [6], due to the existence of a large number of sites,
there is also a large number of databases subject to vul-
nerabilities and risks. Thereof it appears a technique
known as SQL injection (SQLIA, Structured Query
Language Injection Attack), which according to Santin,
Oliveira and Lago [7] citing [8] and [9], is a technique
where an attacker explores vulnerabilities that enable
altering the SQL commands in an application, which
is known as one of the vulnerabilities that generate
greater impact in the organization.

Nofal and Amber [9] add that this technique usually
does not have predictable or specific patterns, which
becomes an important problem for researchers and
developers. Badaruddin [10] concludes that the SQL
injection technique is the second most common error
found in web servers in Internet, with around 44.11 %.

With the purpose of discovering security failures
regarding SQL injection vulnerabilities, in this work
it is carried out an evaluation using SQLMAP of an
Oracle database that stores information of the UDA-

ERP system developed by the Universidad del Azuay
on APEX 5. This paper is divided in the following
sections: i) state of the art, where some concepts are
established, as well as related works; ii) the method-
ology applied for obtaining the results, detailing the
configurations made in the laboratory test equipment;
iii) the results obtained after executing the tool; iv)
the discussion about the results obtained and v) the
conclusions and future works.

1.1. The SQL injection

According to OWASP, the SQL injection is one of the
ten most dangerous and popular vulnerabilities that
may appear in web environments [11], which in general
are difficult to protect due to their high personalization,
complexity, scale [3], technology and development by
programmers with little experience in security [3] [12],
causing serious damages to the businesses of the vic-
tims [13]. In addition to this, Setiawan and Setiyadi [14]
state that, in a computer networks context, any exist-
ing data in a computer connected to another computer
becomes insecure.

Authors Santin, Oliveira and Lago [7] citing [15]
state that there are no solutions that guarantee or
resolve all vulnerabilities which occur at the hardware
and software levels, statement also supported by Se-
tiawan [14]. They also add that, since many elements
are not constantly updated, they are more prone to
cyber-attacks. On the other hand, Kals et al. [12] state
that there are multiple vulnerabilities to the security
of web applications, as a result of generic problems
of input validation. In addition, vulnerabilities may
be kept secret or reported by manufacturers, either
publicly or privately [16].

An SQL injection attack may be basically repre-
sented as indicated in Figure 1.

Figure 1. SQL injection process

Another way of representing the sequence of at-
tacks is the one proposed by AVI Networks [17], which
is presented in Figure 2.

Figure 2. SQL Injection attack sequence. Source [17]

106 INGENIUS N.◦ 25, january-june of 2021

According to Charania and Vyas [18], the SQL in-
jection attack techniques may be classified as follows:

i) Tautologies, a type of attack that uses condi-
tional queries and inserts SQL tokens in them,
demonstrating to be always true.

ii) Illegal or logically incorrect queries, where the
attackers use the error messages of the databases
to find vulnerabilities in the applications.

iii) Queries with UNION, where the attackers inject
infected queries over secure queries using the
UNION operator and, therefore, recover infor-
mation from the database.

iv) Queries with support or Piggy-backed: the at-
tackers attach delimiters such as “;” to the origi-
nal query and run them simultaneously, with the
first being legitimate and the remaining false,
but returning valuable information.

v) Stored procedures, a subset of precompiled
queries, depending on which they are there will
be different forms of attack.

vi) Blind injection, in which the developers hide er-
ror messages that may be useful for attackers
to plan and execute an SQLIA attack. In this
situation the attacker finds a static page, where
true and false questions are made using SQL
commands until the objective is attained.

vii) Timed attacks, which enable the attacker to ob-
serve the time required to execute a query. The
attacker generates a big query using if-else sen-
tences and, in this way, measures the amount of
time spent by the page to load and determine if
the injected sentence is true.

viii) Alternative coding, where ASCII and Unicode
coding enable to evade the filter which scans
“special characters” [19].

An evaluation of vulnerabilities by SQL injection
may be undertaken with the use of technological tools

for such purpose. Novaski [20] suggests the use of
FOSS tools, of which 14 are proposed to be used:
Arachni, Beef, Htcap, IronWASP, Metasploit, Skipfish,
SQLMap, Vega, W3af, Wapiti, Wfuzz, XSSer, Xenotix
and ZAP.

From this work it adds that only the tools Iron-
WASP, Vega, ZAP and SQLMap detected the vul-
nerability of SQL injection, while the reflected XSS
vulnerability was only detected by the tools ZAP and
Xenotix.

It is indicated in their work that it was only possi-
ble to conduct a complete intrusion test in the SQL
injection vulnerability, and it was necessary to apply
three different tools for carrying out such test: i) wapiti-
getcookie, to obtain the session identifier; ii) Htcap
to obtain points of input; and SQLMap to detect and
explore the vulnerability.

Among the related works there are the ones shown
in Table 1. This work, as opposed to those cited works,
focus on testing security aspects in an application
developed in Oracle APEX 5.

It is clear that, despite the time elapsed from the
first time that the SQL injection attack appeared two
decades ago [21], both the injection and the evasion
and mitigation techniques are numerous. Information
technologies are increasingly common in our environ-
ment and have notably affected our lifestyle because
every time that the use and reliability of computers
and computer systems increase, the threat on sensitive
data also increases.

SQL injection vulnerabilities in web applications
are surprisingly vast and are definitely a big threat for
the security of the personal data stored in the web [21].

In practice, Cetin et al. [22] demonstrate that a
GitHub automatic analysis shows that 15.7 % of the
120412 Java source files published contain code vulner-
able to SQL identifier injection attacks (SQL-IDIA),
also pointing out that, after a manual revision, they
proved that 18939 Java files identified during the au-
tomatic analysis are vulnerable to this type of attacks.

Puneet [23] classifies SQL injection in two types: i)
classic SQL injection and ii) advanced SQL injection.

Crespo-Martínez / Vulnerability analysis with SQLMAP applied to APEX5 context 107

Table 1. Works related with the use of SQLMap

Id. Autors Topic Year Objective

1

SQL Injection

2020

Attacks Conduct a work to detect and
Nofal D.E. Detection and prevent SQL injection attacks,
Amer A. A. [9] Prevention applying a fuzzy logic inference

Based on Neuro- system.
Fuzzy
Technique

2

Vulnerability

2018

Compare the vulnerabilities of SQL
O. Ojagbule Analysis of injection in the three most widely
H. Wimmer Content used content managers, considering
R. Haddad [24] Management the Nikto and SQLMap tools for

Systems to SQL such purpose.
Injection Using

3

Uso da Focus on describing the main risks
ferramenta to which web applications are

F. Santin SQLMap para 2017 subject, related to the SQL
J. A. Oliveira V. detecção de injection. They use the SQLMap
Lago Machado [7] vulnerabilidades tool for such purpose.

de SQL
Injection

4

Técnicas de

2017

Propose a technique for hacking
Badaruddin Bin Halib, pirateo de web servers using SQLMap in Kali
Edy Budiman, Hario servidores web Linux.
Jati Setyadi [10] con SQLMap en

Kali Linux

5 S. D. Axinte [25]

SQL injection

2014

The author conducts an analytical
Testing in Web analysis of the SQL injection
Applications technique, and presents methods,
Using SQLMap tools and prevention actions.

6

Vulnerabilidad

2014

de ambientes Analyzes the security aspects of
Barinas, Alarcón, virtuales de virtual learning environments,
Callejas [1] aprendizaje security and vulnerability analysis

utilizando tools.
SQLMap, RIPS,
W3AF y Nessus*

7

SQL Injection

2015

Propose attack and mitigation
A. Tajpour, Detection and techniques against SQL injection
S. Ibrahim, Prevention attacks, comparing various types of
M. Masrom [26] Techniques them.

1.1.1. Classic SQL injection

The basic injection techniques, suggested by [23] are
summarized as follows:

a) Piggy Backed Queries

The intention of the attack is primarily the denial
of service. The database receives multiple queries in
which, during the execution, the normal query operates

as in a normal case, while the second query adheres
to the first to attain the attack. An example of this
attack may be the following:

select cliente from cuentas where
login_id = “admin” AND pass = ‘123’;
DELETE FROM accounts WHERE
ClienteNombre = ’Francisco’;

108 INGENIUS N.◦ 25, january-june of 2021

After the execution of the first query, the inter-
preter detects the semicolon “;” and executes the sec-
ond query together with the first, eliminating all the
data of the client “Francisco”. This type of malicious
data may be protected by first determining the correct
SQL query by means of the appropriate validation or
using appropriate detection techniques, as it is the
static analysis, which does not need the supervision of
the run time.

b) Stored procedure

The intention of attack is summarized as escape au-
thentication and denial of service. Mistakenly, IT
professionals think that the stored SQL procedures
are a remedy for the SQL injection [17], since they
are placed in front of the databases and the security
characteristics are not directly applicable. The stored
procedures do not use standard structured query lan-
guage, they use their own script languages that do not
have the same vulnerability as SQL, but keep other
diverse vulnerabilities related with the scripting lan-
guage. For example, it may be indicated the following:

CREATE PROCEDURE Info_usuario @usuario
varchar2 @password varchar2 @idcliente
int AS BEGIN EXEC(‘Select info_cliente
from tabla_cliente where username=’
”+@usuario ” ’ and pass = ’
”+@password ” ’ GO

Any malicious user may enter malicious data in
the username and password fields. A simple entered
command may destroy the whole database or cause a
denial of service. In this way, [23] suggests that critical
information is not collected in the stored procedures.

c) Union query

It is a type of attack that uses the union operator (U)
while inserting the SQL query. The two SQL queries,
normal and harmful, are joined together using this
operator. The example shows how it is proceeded,
visualizing that the second query is malicious and the
following text (-) is not taken into account, since it is
converted to a comment by the SQL Analyzer.

select * from cuentas where id=’212’
UNION select * from factura where
usuario=’admin’–’ and password=’pass’

1.1.2. d) Alternative coding

With respect to this type of attack, the attacker
changes the SQL injection pattern so that it is not
detected by common detection and prevention tech-
niques. In this method, the attacker uses hexadecimal,

Unicode, octal and ASCII code representation in the
SQL instruction, to avoid being detected due to the
use of coded chains.

1.1.3. Advanced SQL injection

The advanced SQL injection techniques suggested
by [23], are summarized as follows:

a) Deep Blind SQL Injection Attack

In a great number of web applications the visualiza-
tion of mysql errors or another SQL is disabled. In
this attack, the information is inferred by means of
true/false questions. If the injection point is absolutely
blind, then the only way to attack is through the use
of the WAIT FOR DELAY or BENCHMARK [23]
command.

b) Fast flux SQL Injection Attack

The objective of the attack is the extraction of data
or the identity theft through phishing. A host that
carries out phishing may be easily detected by track-
ing its IP address or through the identification of its
domain name. However, according to [23] and [27], the
protection systems of many web hostings may suspend
the service due to the massive traffic generated, thus
cancelling out the criminal purposes. In this manner,
to avoid this problem, attackers apply technique of the
Fast Flux, which is a DNS technique to hide the phish-
ing and malware distribution sites behind a network
of constant change.

1.1.4. c) Compounded SQL injection attacks

It is a mix of two or more attack techniques, gener-
ating an effect greater than the indicated with the
previously described techniques. Compounded SQL
injection, as it is known in the dark world, derives from
the mix of the SQL attack and other web applications
attacks as, for example, the SQL injection attack + the
distributed denial of service (DDoS) attacks. Based
on what is exposed by [23] citing [28], the code to
perform this type of attack would be:

http://exploitable-web.com/link.php?id=1’
union select 1,2,tab1,4 from
(select decode(encode(convert
(compress(post)
using latin1),
des_encrypt
(concat(post,post,post,post),8)),
des_encrypt(sha1(concat(post,post,
post,post)),9))
as tab1 from table_1)a–

Crespo-Martínez / Vulnerability analysis with SQLMAP applied to APEX5 context 109

Another way of combining an attack is mixing an
SQL injection with insufficient authentication. This
attack is exploitable when the parameters of security
have not been initialized where the application fails
when identifying the location of the user, the service or
the application. This enables the attacker to access to
privileged information without verifying the identity
of the user.

In this manner, this type of attack is relatively
simpler than with any other type of attack [23], where
the first step is locating a website that has insufficient
authentication.

2. Materials and methods

The purpose of the security analysis was to evaluate
the security of an application developed in Oracle
APEX, platform which es being developed in the UDA
ERP software of the Universidad del Azuay. With this
premise, it was configured a laboratory considering
the materials and methods which are described in the
following.

For the tests, it was considered the KALI suite and
it was utilized the SQLMap tool, which is based in
Free and Open Source, developed under a GNU GPLv2
license by Miroslav Stampar and Bernardo Damele,
considering that, according to Charania and Vyas [18],
SQLMap supports, among others, the Oracle database,
which is the one used by the UDA ERP software.

It also states that SQL support six injection tech-
niques: Boolean-based blind, time-based blind, error-
based, UNION query-based, out-of-band and stacked
queries.

The previously mentioned techniques take part in
the testing parameters which are included in SQLMap,
which are automatically applied. Using BurpSuite, the
capturing of session cookies is adjusted, applying the
configuration of a local proxy (127.0.0.1:8080) with
the purpose of capturing the POST requests, which
will be further used with SQLMap. Before executing
the tests, the dependencies and packages of the suite
were updated.

Acknowledging that SQLMap is a tool that enables
exploring database servers, for its use it is important
to point to the URL address that contains the SQL
script. The structure “sqlmap -u URL –[parameters]”
is the common sentence, where the -dbs parameter
will enable obtaining the database. After detecting the
vulnerability, it should be used the -D parameter and
the name of the database which will be analyzed. If
the result obtained is effective, the -tables parameter
will enable recovering all the tables from the specified
database.

With the purpose of identifying the vulnerabili-
ties, three tests were conducted, in each of which the
analysis was increased and aspects such as level of ag-

gressiveness in the tests, use of cookies of established
sessions and evasion to identification systems were
varied.

The first test consisted in listing the databases; in
the second, it was increased the degree of aggressive-
ness and the number of tests to obtain information
from the databases; and in the third attack it was
pretended to use a random agent evading the proxies
with the unique purpose of capturing a session cookie,
element which is used as the base for automatic tests,
in which a valid session of an active user is simulated.

3. Results

3.1. First test

The evaluation of vulnerabilities of the database by
executing the command root@kali: /sqlmap-dev#
python3 sqlmap.py -u –dbs, gave the result expressed
in Table 2, considering that the attack generated its
own cookie for evaluation: (’USUARIO=ORA_WWV-
cUs...UNNyk6flfB’). The tests starts at 13:03:52 on
2020-03-04 and ends at 13:04:22 /2020-03-04/

Table 2. Results of the first test

Test Description

Heuristic analysis
The heuristic analysis detected that the

target is protected by some type of
WAF/IPS.

URL Content

The ‘p’ parameter of the GET method
does not seem to be dynamic.

The basic heuristic tests conducted
indicate that the ‘p’ parameter is not

injectable.
SQL injection It is not vulnerable.

Reflective values found and filtered out.
It means that there are “reflective” values

Test ‘AND boolean-based blind- within the response that contains (parts
WHERE or HAVING clause’ of) the useful load. This is significantly

bad in some cases, especially in Boolean
injections.

3.2. Second test

In the second test it was executed the com-
mand with options: python3 sqlmap-dev/sqlmap.py
-u "http://172.16.1.87:8080/ords/f?p=502" –level=5
–risk=3 -dbs -a –tamper=between. The test starts at
12:30 on 2020-03-05 and ends at 15:18 on 2020-03-05.

With the parameters chosen the intensity of the
attack is increased, as well as the level and the number
of tests. The results are expressed in Table 3.

110 INGENIUS N.◦ 25, january-june of 2021

Table 3. Results of the second test

Test Description

Heuristic analysis
The heuristic analysis detected that the

target is protected by some type of
WAF/IPS.

URL Content

The ‘p’ parameter of the GET method does
not seem to be dynamic.

The basic heuristic tests conducted indicate
that the ‘p’ parameter is not injectable.

SQL injection It is not vulnerable.
Reflective values found and filtered out.

Test ‘AND boolean- It means that there are “reflective” values
based blind – WHERE within the response that contains (parts of)
or HAVING clause’ the useful load. This is significantly bad in

some cases, especially in Boolean
injections.

The ‘p’ parameter of the GET method does
not seem to be dynamic.

The basic heuristic tests conducted indicate
that the ‘p’ parameter is not injectable.

The User-Agent parameter is not injectable.
Test UNION con consulta The ‘Referer’ parameter does not seem to
NULL y Método heurístico be dynamic.
con parámetro ’User-Agent’ In the heuristic analysis the ‘Referer’

parameter does not seem to be injectable.
The HOST parameter does not seem to be

dynamic.
In the heuristic analysis the ‘Host’

parameter does not seem to be injectable.

3.3. Third test

It is captured the cookie ORA_WWV-
W7Hhdq_v8DH8Oli2Fp4IsyM and it is proceeded
to use it while the application is active.

It is executed the command python3 sqlmap-
dev/sqlmap.py -u "http://172.16.1.87:8080/ords/f?p=
502:1:1347964822807:::::" –tables –cookie=ORA_WWV-
W7Hhdq_v8DH8Oli2Fp4IsyMR –random-agent –
ignore-proxy –level 5, including a random agent and
ignoring the proxies, because the latter is only used
with the purpose of capturing cookies, as well as in-
creasing the level of analysis to the maximum. The
module of identification of tables is added. The analy-
sis starts on 2020-03-16 at 12:21:44. Table 4 reflects
the results obtained.

4. Discussion

The attacks common to computer systems occur by
viruses, worms and human adversaries [3]. The detec-
tion of an attack by SQL injection may occur when
it is usual to check log verifications, access registers,
intrusion detection, among others [7], [15], to which
it is added the application of the principle of defense
in depth applying tools such as IDS or WAFs [3]. The
continuous evaluations to the applications that are
developed and their certifications, before passing to
production environments, become another fundamen-
tal practice, aspect which is usually omitted in the
organizations due to the attempt to publish as soon
as possible.

Table 4. Resultados de la tercera prueba

Test Description

Connection with the URL

The connection requests to redirect
to a new URL generated randomly.

This is not accepted since a
connection already established is

being used.
Heuristic analysis The WAF/IPS is evaded.

URL Content

The ‘p’ parameter of the GET
method does not seem to be dynamic.
The basic heuristic tests conducted
indicate that the ‘p’ parameter is

not injectable.
SQL injection It is not vulnerable.

Reflective values found and filtered
out.

Test ‘MySQL Boolean- It means that there are “reflective”
based blind – Parameter values within the response that
replace (MAKE_SET)’ contains (parts of) the useful load.

This is significantly bad in some
cases, especially in Boolean

injections.

The SQL injection is not a technique which is ap-
plied by pressing a button. Knowledge about SQL
language is required, Clarke [8] adds that the use of
tools to carry out this type of attacks is important,
because they enable to automate the attack. The com-
bination of tools enables obtaining more precise results.
In agreement with Satin et al. [7] and Ojagbule et al. [5],
the application of the SQLMap tool for the analysis
was chosen due to its popularity, availability and the
access to its diverse distributions, verifying that tools
based on FOSS enable getting results as interesting as
using paying instruments.

It has been evidenced that in the exploits database
(https://www.exploit-db.com), the last mechanism to
violate a system made in APEX was released on April
16th, 2009.

As opposed to the work conducted by Clarke (2009)
in which an application deliberately vulnerable (damn
vulnerable website) is used, developed in PHP with
the MySQL data engine whose objective is providing a
test platform to professionals that require testing their
levels of skills and knowledge.

The result of the ‘AND Boolean-based blind –
WHERE or HAVING clause’ test can be exemplified
in a static page, except with a small part where it
is reflected the value of the parameter tested (the
same where the SQLMap carries out the injection). In
case that such “reflective” content is not detected and
neutralized, there is a considerable potential that the
response appears as a change due to the useful loads
of SQL injection utilized (for example, AND 2>3).
Therefore, the risk of detecting false positives (or false
negatives in some cases) arises.

In the first execution, the tool ends with the ar-
gument that all the parameters evaluated do not
seem injectable, which suggests increasing the level
and the risk if it is desired to conduct more tests.

Crespo-Martínez / Vulnerability analysis with SQLMAP applied to APEX5 context 111

If it is suspected of any type of protection mecha-
nism involved (for example, WAF), it could be used
the option ’–tamper’ (e.g. ’–tamper=space2comment’)
and/or change it by ’–random-agent’. The adjustment
in test 3 with the configuration of the LEVEL=5 pa-
rameter was necessary for SQLMap to carry out the
vulnerability test of cookies.

According to [21], the detection and prevention
becomes a difficult task if the concept of this type
of attacks is not appropriately understood. Carrying
out binary evaluations, as proposed by [29], might be
considered as a mitigation alternative, since it is an
extremely automated method that detects and blocks
SQL injection attacks in web applications.

When facing blind SQL injection attacks, the most
popular technique is AMNESIA (Analysis and Monitor-
ing for Neutralizing SQL-injection Attacks) [30], which
is a tool only applicable to protect applications based
on JAVA and which use monitoring in runtime [21].
This tool uses machine learning algorithms to provide
prevention and detection mechanisms of blind SQL
injection threats. Another prevention mechanism is
the pattern identification algorithm, proposed by Aho-
Corasick [31], which has two phases: i) a static phase
and ii) a dynamic phase.

According to [32], in the static phase the SQL
queries generated by the user are compared with a list
of patterns that contain a sample of the best-known at-
tack patterns. If the SQL sentence agrees exactly with
one of the patterns given in the list of static patterns,
it means that an SQL attack is being attempted.

Another alternative proposed by [31] citing [33] is
the SQLRand, where the basic idea is to generate SQL
sentences using random commands in which the query
template within the application may be randomized.
In this way, the SQL commands that are injected by
malicious users are not coded, because the proxy does
not recognize the commands injected, thus causing
that the attack is not carried out.

In addition, [31] mentioning [34] indicates that
there exists an additional method known as Query
Tokenization Method, in which a token is generated of
both the original query and the query with injection.
Then, the tokens resulting from this process are stored
in an array. The lengths of array obtained from the
original query and from the query with injection are
compared, and if there is a coincidence there is no
attempt of SQL injection, otherwise, it is an attack.

The proposal [35] is added to the list of mitigation
options, which consists in a grammar tree validation
approach, represented in a sentence. To grammatically
analyze a sentence requires knowledge of the grammar
of the language in which the sentence is written. In
such a way, when the attacker injects a malicious SQL
query, then the grammar tree of the original query and
of the query with injection do not coincide. In this
technique, the sentence in particular and the original

sentence are compared in runtime.
It is also important to indicate that secure coding

is crucial for the design of software and computing
systems, aspect which is omitted by developers [12]
largely due to the lack of knowledge of secure coding
standards, negligence and performance loss, to which
it is added usability situations [36].

5. Conclusions

One of the most notable features of Oracle APEX is
that of creating sessions with cookies and URL links to
the software with random data. The tests conducted
with the execution of the different options of the com-
mands indicated in this technique, did not enable to un-
dertake the software with the SQL injection technique
to a solution developed in this platform. Although a
cookie may be captured with Burp Suite, to decipher
it takes a considerable time. However, during that
time, Oracle APEX already dynamically generated a
new cookie, making an attack through this technique
basically impossible.

The contribution of this paper has been to evaluate
different SQL injection techniques to emphasize on
safe code overwriting, optimize the labels generated by
default, thus improving the level of security of an appli-
cation developed in Oracle APEX, without forgetting
that tests have been developed in a time span, without
exempting latent vulnerabilities that may appear on
day 0.

References

[1] A. Barinas López, A. C. Alarcón Al-
dana, and M. Callejas Cuervo, “Vulnera-
bilidad de ambientes virtuales de apren-
dizaje utilizando SQLMAP, RIPS, W3AF
y Nessus,” Ventana Informática, no. 30,
pp. 247–260, 2014. [Online]. Available: https:
//doi.org/10.30554/ventanainform.30.276.2014

[2] S. Mohammadi and A. Namadchian, “Anomaly-
based Web Attack Detection: The Application
of Deep Neural Network Seq2Seq With At-
tention Mechanism,” The ISC International
Journal of Information Security, vol. 12, no. 1,
pp. 44–54, 2020. [Online]. Available: http:
//doi.org/10.22042/ISECURE.2020.199009.479

[3] K. L. Ingham, A. Somayaji, J. Burge, and S. For-
rest, “Learning DFA representations of HTTP for
protecting web applications,” Computer Networks,
vol. 51, no. 5, pp. 1239–1255, 2007, from Intrusion
Detection to Self-Protection. [Online]. Available:
https://doi.org/10.1016/j.comnet.2006.09.016

https://doi.org/10.30554/ventanainform.30.276.2014
https://doi.org/10.30554/ventanainform.30.276.2014
http://doi.org/10.22042/ISECURE.2020.199009.479
http://doi.org/10.22042/ISECURE.2020.199009.479
https://doi.org/10.1016/j.comnet.2006.09.016

112 INGENIUS N.◦ 25, january-june of 2021

[4] B. Dwan, “The Computer Virus – From
There to Here.: An Historical Perspec-
tive.” Computer Fraud & Security, vol. 2000,
no. 12, pp. 13–16, 2000. [Online]. Available:
https://doi.org/10.1016/S1361-3723(00)12026-3

[5] O. Ojagbule, H. Wimmer, and R. J. Haddad, “Vul-
nerability Analysis of Content Management Sys-
tems to SQL Injection Using SQLMAP,” in South-
eastCon 2018, 2018, pp. 1–7. [Online]. Available:
https://doi.org/10.1109/SECON.2018.8479130

[6] C. Kruegel, G. Vigna, and W. Robert-
son, “A multi-model approach to the de-
tection of web-based attacks,” Computer
Networks, vol. 48, no. 5, pp. 717–738,
2005, web Security. [Online]. Available:
https://doi.org/10.1016/j.comnet.2005.01.009

[7] F. Santin, J. A. Oliveira de Figueiredo, and
V. Lago Machado, “Uso da ferramenta sqlMap
para detecção de vulnerabilidades de SQL In-
jection,” in Anais do EATI - Encontro Anual
de Tecnologia da Informação, 2017. [Online].
Available: https://bit.ly/340cKP6

[8] J. Clarke, SQL Injection Attacks and Defense
(Second Edition), second edition ed., J. Clarke, Ed.
Boston: Syngress, 2012. [Online]. Available: https:
//doi.org/10.1016/B978-1-59-749963-7.00012-8

[9] D. E. Nofal and A. Amer, SQL In-
jection Attacks Detection and Prevention
Based on Neuro-Fuzzy Technique. Springer,
Cham, 2019. [Online]. Available: https:
//doi.org/10.1007/978-3-030-31129-2_66

[10] B. Bin Halib, E. Budiman, and H. Jati Setyadi,
“Teknik Hacking Web Server Dengan SQLMAP Di
Kali Linux,” Jurnal Rekayasa Teknologi Informasi,
vol. 1, no. 1, pp. 67–72, 2017. [Online]. Available:
http://dx.doi.org/10.30872/jurti.v1i1.642

[11] OWASP. (2017) lobally recognized by developers
as the first step towards more secure coding.
[Online]. Available: https://bit.ly/2JTb9DF

[12] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic,
“SecuBat: A Web Vulnerability Scanner,” in
Proceedings of the 15th International Conference
on World Wide Web, ser. WWW ’06. New
York, NY, USA: Association for Computing
Machinery, 2006, pp. 247–256. [Online]. Available:
https://doi.org/10.1145/1135777.1135817

[13] J. Fonseca, M. Vieira, and H. Madeira,
“Testing and Comparing Web Vulnerability
Scanning Tools for SQL Injection and XSS
Attacks,” in 13th Pacific Rim International
Symposium on Dependable Computing (PRDC

2007), 2007, pp. 365–372. [Online]. Available:
https://doi.org/10.1109/PRDC.2007.55

[14] E. B. Setiawan and A. Setiyadi, “Web vul-
nerability analysis and implementation,” IOP
Conference Series: Materials Science and En-
gineering, vol. 407, p. 012081, sep 2018.
[Online]. Available: https://doi.org/10.1088%
2F1757-899x%2F407%2F1%2F012081

[15] J. Atoum and A. Qaralleh, “A hybrid tech-
nique for SQL injection attacks detection
and prevention,” International Journal of
Database Management Systems (IJDMS, vol. 6,
no. 1, pp. 21–28, 2014. [Online]. Available:
http://doi.org/10.5121/ijdms.2014.6102

[16] D. Herrmann and H. Pridöhl, Basic Con-
cepts and Models of Cybersecurity, 2020,
vol. 21. [Online]. Available: https://doi.org/
10.1007/978-3-030-29053-5_2

[17] AVI Network. (2020) SQL Injection Attack.
[Online]. Available: https://bit.ly/3mb96YF

[18] P. Ramasamy and S. Abburu, “SQL Injection
Attack: Detection and Prevention,” International
Journal of Engineering Science and Technology,
vol. 4, no. 4, pp. 1396–1401, 2016. [Online].
Available: https://bit.ly/3n7aSeV

[19] XS Code. (2020) XS:Code. [Online]. Available:
https://bit.ly/37MYc6s

[20] D. Novski Neto, “Web (eternamente) revisitada :
análise de vulnerabilidades web e de ferramentas
de código aberto para exploração,” 2019. [Online].
Available: https://bit.ly/37VrNui

[21] V. K. Gudipati, T. Venna, S. Subburaj, and
O. Abuzaghleh, “Advanced automated SQL
injection attacks and defensive mechanisms,”
in 2016 Annual Connecticut Conference on
Industrial Electronics, Technology Automation
(CT-IETA), 2016, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/CT-IETA.2016.7868248

[22] C. Cetin, D. Goldgof, and J. Ligatti, “SQL-
Identifier Injection Attacks,” in 2019 IEEE
Conference on Communications and Network
Security (CNS), 2019, pp. 151–159. [Online]. Avail-
able: https://doi.org/10.1109/CNS.2019.8802743

[23] J. P. Singh, “Analysis of SQL Injection De-
tection Techniques,” 2016. [Online]. Available:
https://bit.ly/375XeDh

[24] O. Ojagbule, H. Wimmer, and R. J. Haddad, “Vul-
nerability Analysis of Content Management Sys-
tems to SQL Injection Using SQLMAP,” in South-
eastCon 2018, 2018, pp. 1–7. [Online]. Available:
https://doi.org/10.1109/SECON.2018.8479130

https://doi.org/10.1016/S1361-3723(00)12026-3
https://doi.org/10.1109/SECON.2018.8479130
https://doi.org/10.1016/j.comnet.2005.01.009
https://bit.ly/340cKP6
https://doi.org/10.1016/B978-1-59-749963-7.00012-8
https://doi.org/10.1016/B978-1-59-749963-7.00012-8
https://doi.org/10.1007/978-3-030-31129-2_66
https://doi.org/10.1007/978-3-030-31129-2_66
http://dx.doi.org/10.30872/jurti.v1i1.642
https://bit.ly/2JTb9DF
https://doi.org/10.1145/1135777.1135817
https://doi.org/10.1109/PRDC.2007.55
https://doi.org/10.1088%2F1757-899x%2F407%2F1%2F012081
https://doi.org/10.1088%2F1757-899x%2F407%2F1%2F012081
http://doi.org/10.5121/ijdms.2014.6102
https://doi.org/10.1007/978-3-030-29053-5_2
https://doi.org/10.1007/978-3-030-29053-5_2
https://bit.ly/3mb96YF
https://bit.ly/3n7aSeV
https://bit.ly/37MYc6s
https://bit.ly/37VrNui
https://doi.org/10.1109/CT-IETA.2016.7868248
https://doi.org/10.1109/CNS.2019.8802743
https://bit.ly/375XeDh
https://doi.org/10.1109/SECON.2018.8479130

Crespo-Martínez / Vulnerability analysis with SQLMAP applied to APEX5 context 113

[25] A. Ciampa, C. A. Visaggio, and M. Di Penta,
“A Heuristic-Based Approach for Detecting
SQL-Injection Vulnerabilities in Web Appli-
cations,” in Proceedings of the 2010 ICSE
Workshop on Software Engineering for Se-
cure Systems, ser. SESS ’10. New York,
NY, USA: Association for Computing Ma-
chinery, 2010, pp. 43–49. [Online]. Available:
https://doi.org/10.1145/1809100.1809107

[26] R. Alsahafi, “SQL Injection Detection and
Prevention Techniques,” International Journal
of Scientific & Technology Research, vol. 8,
no. 1, pp. 182–185, 2019. [Online]. Available:
https://bit.ly/2W24Ksp

[27] L. Wichman, “Mass SQL injection for malware
distribution,” SANS Institute, Tech. Rep., 2011.
[Online]. Available: https://bit.ly/2Ke3ks0

[28] JAVANICUS. (2016) Posts Related to
Web-Pentest-SQL-Injection. [Online]. Available:
https://bit.ly/2IEFUMc

[29] V. Sunkari and C. V. Guru rao, “Protect
Web Applications against SQL Injection Attacks
Using Binary Evaluation Approach,” Interna-
tional Journal of Innovations in Engineering and
Technology (IJIET), pp. 484–490, 2016. [Online].
Available: https://bit.ly/377eVSR

[30] W. G. J. Halfond and A. Orso, “AMNE-
SIA: Analysis and Monitoring for NEutralizing
SQL-Injection Attacks,” in Proceedings of the
20th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’05.
New York, NY, USA: Association for Computing
Machinery, 2005, pp. 174–183. [Online]. Available:
https://doi.org/10.1145/1101908.1101935

[31] M. A. Prabakar, M. KarthiKeyan, and
K. Marimuthu, “An efficient technique for

preventing SQL injection attack using pattern
matching algorithm,” in 2013 IEEE International
Conference ON Emerging Trends in Computing,
Communication and Nanotechnology (ICECCN),
2013, pp. 503–506. [Online]. Available: https:
//doi.org/10.1109/ICE-CCN.2013.6528551

[32] G. Yiğit and M. Arnavutoğlu, “SQL Injection
Attacks Detection & Prevention Techniques,”
International Journal of Computer Theory and
Engineering, vol. 9, no. 5, pp. 351–356, 2017.
[Online]. Available: https://bit.ly/3qKrEm5

[33] S. W. Boyd and A. D. Keromytis, “Boyd
s.w., keromytis a.d.” in International Confer-
ence on Applied Cryptography and Network
Security, 2004, pp. 292–302. [Online]. Available:
https://doi.org/10.1007/978-3-540-24852-1_21

[34] L. Ntagwabira and S. L. Kang, “Use of Query
tokenization to detect and prevent SQL injection
attacks,” in 2010 3rd International Conference on
Computer Science and Information Technology,
vol. 2, 2010, pp. 438–440. [Online]. Available:
https://doi.org/10.1109/ICCSIT.2010.5565202

[35] G. Buehrer, B. W. Weide, and P. A. G.
Sivilotti, “Using Parse Tree Validation to Prevent
SQL Injection Attacks,” in Proceedings of the
5th International Workshop on Software Engi-
neering and Middleware, ser. SEM ’05. New
York, NY, USA: Association for Computing
Machinery, 2005, pp. 106–113. [Online]. Available:
https://doi.org/10.1145/1108473.1108496

[36] F. D. Nembhard, M. M. Carvalho, and T. C.
Eskridge, “Towards the application of recom-
mender systems to secure coding,” EURASIP
Journal on Information Security, vol. 2019,
no. 1, p. 9, Jun. 2019. [Online]. Available:
https://doi.org/10.1186/s13635-019-0092-4

https://doi.org/10.1145/1809100.1809107
https://bit.ly/2W24Ksp
https://bit.ly/2Ke3ks0
https://bit.ly/2IEFUMc
https://bit.ly/377eVSR
https://doi.org/10.1145/1101908.1101935
https://doi.org/10.1109/ICE-CCN.2013.6528551
https://doi.org/10.1109/ICE-CCN.2013.6528551
https://bit.ly/3qKrEm5
https://doi.org/10.1007/978-3-540-24852-1_21
https://doi.org/10.1109/ICCSIT.2010.5565202
https://doi.org/10.1145/1108473.1108496
https://doi.org/10.1186/s13635-019-0092-4

	Introduction
	The SQL injection
	Classic SQL injection
	d) Alternative coding
	Advanced SQL injection
	c) Compounded SQL injection attacks

	Materials and methods
	Results
	First test
	Second test
	Third test

	Discussion
	Conclusions

