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Abstract

At present, the study of structural dynamics is mainly
theoretical with access to certain simulations through
software, however, this project attempts that the
student may understand and physically observe the
dynamic responses of experimental models. These
models correspond to 2D - frames with multiple de-
grees of freedom that are subjected to acceleration
in the base; this acceleration is generated by a Shake
Table II, and the results obtained will be compared
with theoretical results. These theoretical results were
obtained based on modal decomposition and New-
mark’s method for calculating the dynamic response,
considering the linear variation in the acceleration
of each floor. The application developed, ATH Dy-
namic Responses, provided the theoretical responses
through a graphical interface friendly for the user.
The experimental models are constituted by two ma-
terials: stainless steel for frame legs and acrylic sheets
for floors; these were tested on a Shake Table I1”. The
data was acquired using accelerometers that were
placed in each floor and in the shake table, and they
were corrected both by baseline and with the low
pass filter. The results obtained show that the in-
strumentation with the Shake Table IT and the data
acquisition with accelerometers provide results similar
to the theoretical ones regarding dynamic responses
and modal properties.

Keywords: modal decomposition, structural dynam-
ics, experimental model, Shake Table, Newmark, filter

Resumen

Hoy en dia, el estudio de la dindmica estructural
es fundamentalmente teérico con acceso a ciertas si-
mulaciones via software, sin embargo, este proyecto
intenta que el estudiante pueda entender y observar
de manera fisica las respuestas dindmicas de modelos
experimentales. Estos modelos corresponden a porti-
cos planos de multiples grados de libertad, que estan
sometidos a aceleracion en la base, la cual es generada
por una mesa vibratoria. Los resultados obtenidos
se compararan con tedricos. Estos fueron obtenidos
basandose en la descomposicion modal y en el método
de Newmark para el cdlculo de la respuesta dindmica,
considerando variacién lineal en la aceleracién de
cada piso. La aplicacion generada, ATH Dynamic
Responses, proporcioné las respuestas tedricas, me-
diante una interfaz grafica amigable para el usuario.
Los modelos experimentales estan constituidos por
dos materiales: acero inoxidable (parantes) y laminas
de acrilico (pisos), y fueron ensayados sobre una mesa
vibratoria. La adquisicién de datos se realizé mediante
acelerémetros que se colocaron en cada piso y sobre
la mesa vibratoria, fueron corregidos, tanto por linea
base como con el filtro pasa bajo. Los resultados obte-
nidos muestran que la instrumentacién con una mesa
vibratoria y adquisicién de datos con acelerémetros
proporcionan valores muy similares a los teéricos en
cuanto a respuestas dinamicas y propiedades modales.

Palabras clave: descomposicion modal, dindmica
estructural, modelo experimental, mesa vibratoria,
Newmark, filtro
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1. Introduction

Ecuador has a significant seismic activity, the last
earthquake that affected the country with great inten-
sity occurred on April 16th, 2016 with a magnitude
of momentum My, of 7.8, it happened in the coastal
provinces of Manabi and Esmeraldas [1], causing mate-
rial damages, collapsing of buildings and nearly seven
hundred people dead.

The earthquake was caused by the subduction of
the Nazca oceanic plate below the South American
plate; the friction between both plates produces an
accumulation of elastic energy, which is relaxed when
there is a sudden rupture and the seismic event oc-
curs [2].

This has motivated engineers to develop a philos-
ophy which is centered in preventing life losses, con-
trolling the collapse of all structures [3]. As a result,
every building should be designed considering seismic
solicitation; the analysis of the structure when facing
this type of load is the main problem that structural
dynamics seeks to solve.

In most cases, the study of structural dynamics is
carried out theoretically, without being able to physi-
cally observe the behavior of structures in the event of
an earthquake or acceleration in the base. Therefore,
this project is focused on constructing experimental
models with multiple degrees of freedom and made of
appropriate materials, which means slabs very rigid
compared with the bending columns, where the model
will concentrate the deformation of the structure. In
addition, both columns and floors are considered axi-
ally rigid, in the analytical model, it will be considered
that floors concentrate the mass, and that frame legs
are the ones that collaborate with the rigidity, i.e.,
that it behaves as a shear building [4].

Experimental techniques, such as placing triaxial
accelerometers or the use of dynamic excitation equip-
ment that reproduce earthquakes to scale [5], have been
implemented to obtain dynamical responses and modal
properties in experimental models and real structures.
A shake table, known as Shake Table II [6], was used
in the project. This device is an earthquake simulator
for small physical-academic models (maximum mass =
7.5 kg), that will enable generating floor accelerations
in the form of pulsations, sinusoidal sweeps and seis-
mic records (scaled) [6]. The Shake Table IT enables
reproducing floor accelerations in two directions (x,y),
however, for the project it was used 2-D models and
unidirectional acceleration, each floor will move in only
one direction [7].

Dynamic properties of experimental structures have
been determined in [7,8] and [9] using the same method,
however, these are centered only in maximum displace-
ments and others only in obtaining frequencies; besides,
they are limited to two floors. In the project it will be
analyzed how frequencies and dampings are obtained

and, besides, models according to their construction
mode, have the possibility of stacking until becoming
a model of six floors, and the unique limitation is the
maximum weight withstood by the shake table.

2. Materials and methods

The project consists of the theoretical foundation,
which includes the concepts about structural dynamics
used to develop the Matlab script; and the experimen-
tal part, where it is established the type of material to
be used, the geometrical features, the acceleration of
the base, the acceleration of each floor, the operation
of the shake table, and the way to acquire and process
the responses.

2.1. System with multiple degrees of freedom

From the point of view of structural dynamics, a sys-
tem with multiple degrees of freedom (MDOF) is one
that requires more than one coordinate to describe
its movement. The degrees of freedom may also deter-
mine the directions of acceleration of the concentrated
masses. In the project, the direction of the earthquake
will be uniaxial, and hence, the number of degrees of
freedom will be one per floor [10].

Experimental models are modular and may become
systems from one to six degrees of freedom, the tests
were carried out with systems of one, two, and three
degrees of freedom. Figure 1 shows the model with
three degrees of freedom.

Detail (Figure 2)
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Figure 1. Model with three degrees of freedom
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2.2. Shear building

A shear building is characterized as an array that con-
centrates the mass in each floor, and besides they
should act as diaphragms infinitely rigid to bend-
ing and axial load. Therefore, in the model, only the
columns should collaborate with the rigidity [4].

The preceding considerations enable simplifying
the structure and solving the problem as an MDOF,
where the slabs are infinitely rigid, and enable assur-
ing that there will be no rotations between frame legs
and floors. In the experimental model, the rotation
was controlled according to the connection between
the frame leg and the acrylic, because the connection
is not fixed at a point but in an area, as observed
in Figure 2. Regarding axial deformation, it will be
negligible due to the physical features of the floors.

Front view Lateral view
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Figure 2. Detail of the connection

In the experimental model it should be taken into
account that columns add mass, and therefore it was
considered that the slab concentrates half of the mass
of each column that is above and below it, as shown
in Figure 3.
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Figure 3. Distribution of mass of the structure

Where: mFi;; and mFd;; is the mass of the frame
leg from degree of freedom i to degree of freedom j.

Cutting axis: helps to quantify how the mass of
each floor was concentrated.

2.3. Inertia force

It relates the external forces that act on the mass of
the structure with the accelerations of the dynamic
degrees of freedom, as shown in Equation (1) [11].

{Fiy = [M] x {@} (1)
Where {F'i} is the vector of inertial force, [M] is
the mass matrix and {Z} is the vector of acceleration
of the degrees of freedom.
The mass matrix (2) is an estimation of the mass
of the whole structure, this matrix is also known as
«matrix of concentrated mass» [12].

[M] =

o O O

0
ma

0

0

coo3

=

OS o O
w

2.4. Elastic force

It relates the external forces on the rigidity of the struc-
ture with the displacements of the dynamic degrees of
freedom, as shown in Equation 3 [11].

{Fs} = [K] x {z} (3)
Where {F's} is the vector of elastic force, [K] is the
rigidity matrix and {z} is the vector of displacement
of the degrees of freedom.
The rigidity matrix ((4) includes properties of the
columns, such as length, area and modulus of elastic-
ity [12].

kir k2 kin
ka1 koo kon

K] =| . : (4)
knt ko knn

2.5. Damping force

It is a mechanism with which energy may be dissi-
pated from the structure; according to this, the exter-
nal forces that act on the damping are related with
the velocities of the dynamic degrees of freedom as
shown in Equation ?7?5 [11].

{Fd} = [C] x{@} (5)

Where {Fd} is the vector of damping force, [C] is

the damping matrix and {2} is the vector of velocity
of the degrees of freedom.

Classical damping will be supposed for obtaining

the damping matrix. The classical damping matrix
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may be used in this type of models, if the damping
mechanisms are similar in all the structure, i.e., a
MDOF structure which in turn is constituted by the
same structural system and similar materials, along
the entire height [11].

One of the procedures within classical damping is
modal damping. The analysis provides the damping of
a specific number of modes, as indicated in expression
(6) [13] y [14].

T
{¢n} X [C] X {¢n} =2 X & X wy (6)
Where C' is the damping matrix, ¢,, is the vector
of each modal form, &, is the damping factor, w,, the
natural frequency, and n is the number of modes.

2.5.1. Damping factor

An important feature is the damping of the structure,
which is defined based on the damping factor; for this
reason, it should be obtained applying the bandwidth
method described in the following [15].

a) Bandwidth

It is a method to obtain the damping factor in the
frequency domain; this technique is widely used in
professional practice, in which a structure should be
excited by simultaneous or individual pulsations at
different frequencies [16].

With the purpose of applying the method it should
be considered the effect of the movement of the base,
whereby it is proceeded to find the ratio between the
amplitudes of the Fourier transform of the acceleration
records of each slab with respect to the records of the
base. This is known as transmissibility [11], which is
indicated in expression (7).

(7)

Where T'r is transmissibility, «,(w) amplitude of
the acceleration of each floor in the frequency domain
and ap(w) is amplitude of the acceleration of the base
in the frequency domain.

From the calculation of the transmissibility, plots
with respect to the frequency are obtained and the
damping factor is determined by means of the differ-
ence between two frequencies called medium power
points at the frequency corresponding to each mode.
The medium power points are the frequencies located
at % of the maximum amplitude of the transmissi-
bility, as indicated in Figure 4, and this will enable
applying Equation (8) [17].

Transmissibility vs Frequency
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Figure 4. Bandwidth
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Where f is the frequency with maximum ampli-

tude (Hz), f1 and f5 are the medium power frequencies
(Hz).

2.6. Equation of motion

Based on the forces detailed in the previous sections,
the equation of the MDOF system will be established,
taking into account Newton “s second law of motion,
it is obtained Equation (9).

[M]x{i}+[C)x {i} +[K]x{u} = = [M]x{} x {if(g
Where {:} is the positioning vector, {Zo} the floor
acceleration for each time instant and u is the relative
coordinate of each degree of freedom with respect to
the base.
Figure 5 presents the forces acting on the system.

m
’ <—Fé(t) = Elastic force
«——Fa(t) = Damping force
Floor
m
Frame Frame
k c
Xo(t) = Acceleration
of floor
—
\ SHAKE TABLE

Figure 5. Acting forces

2.7. Newmark ‘s method

It is a method very versatile for calculating the re-
sponse of a dynamic system. In 1959, N. M. Newmark
developed a family of methods depending on the law
of variation between consecutive time instants [11]; the
linear acceleration method was the one used here, as
shown in Figure 6.
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Figure 6. Linear acceleration

The matrix representation of the method applied
for obtaining the responses of acceleration, velocity
and position in time for a system with one degree of
freedom, is shown in expression (10), where the re-
sponse at instant k£ 4+ 1 only depends on the response
at instant k [11].

Uk+1 Uk
Ug41 | = [A] X | up | + [B] X TOk41 (10)
Ug+1 g,

Where [A], [B] are constant matrices that depend
on the frequency, damping, rigidity and time interval,
and Zogyq is floor acceleration at instant k + 1 [12]
and [18]

2.7.1. Stability of the method

There are two types of methods depending on their
stability: conditionally stable and unconditionally sta-
ble [11].

Conditionally stable procedures depend on the pas-
sage of time and unconditionally stable procedures are
independent of the passage of time [11].

Newmark ‘s method based on linear acceleration is
conditionally stable, and must comply with expression
(11) to make possible its application.

At < 0,551
T )

(11)
Where At is the time interval and T is the period
of the system.

2.8. Modal analysis

It enables calculating the response of the structure
based on the vibration modes. For this purpose, it is
important to define its dynamic properties: frequency,
damping and modal shapes for each mode [19].

This analysis is very useful because it enables de-
composing the responses of a structure in models of
one degree of freedom, and combine them to obtain
the response of the MDOF system.

2.8.1. Vibration frequencies and modes

In the damped system with multiple degrees of free-
dom, it should be established natural frequencies and
modal shapes, considering it as a system subject to
free vibration and without damping, such that in ex-
pression (9) the terms floor acceleration and damping
become zero, thus resulting in expression (12).

[M] x i+ [K] x{u}=0 (12)

Solving this differential equation yields expression

(13), which is the base for solving the eigenvalues and
eigenvectors problem [11].

[[K] = [M] x {w?}] x {¢} =0 (13)

Equation (13) corresponds to a system of simul-

taneous homogeneous equations, which by definition

only has a non-trivial solution, therefore, the determi-

nant of the coefficient matrix is zero, as indicated in
Equation (14) [20].

1K)~ [M] x {w?}| =0 (14)
When expanding the determinant, it is obtained a
polynomial of order 2n (n: number of vibration modes),
where w? is the variable. This equation is known as
«equation of frequencies». The solutions are called
eigenvalues, and their square roots correspond to the
natural frequencies w of the system [21].
In order to determine the eigenvectors or vibration
modes ¢, the natural frequencies w are substituted in
equation (13), and such equation is solved.

2.8.2. Orthogonality of the modes

The previous analysis enables demonstrating that the
vibration modes corresponding to different frequencies
fulfill the orthogonality condition, which is shown in
the following equation (15) [11].

{6i}" x [M] x {¢j} =0
{oi}" x [K] x {¢j} =0

i # j Where i,j : vibration modes

(15)

Where ¢i v ¢j are modal shapes for the modes
i and j, [M] the mass matrix and [K] the rigidity
matrix.

From this it is obtained that the system may be
solved for each vibration mode as a separate system,
without the influence of one mode with respect to the
other, and the response of the entire system is defined
based on expression (16).

{z} = {01} x q1(t) + {92} x q2(t) + - -- {¢n} x qn(?)
{@} = {61} x qL(t) + {62} x q2() + -~ {¢n} x qn(t)
{@} = {o1} x q1(t) + {62} x q2(t) + -~ {¢n} x gn(t)

)
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Where ¢; is modal shape, and ¢, ¢ and § are the
modal coordinates of position, velocity and accelera-
tion, respectively, for the i-th mode.

Replacing the response {z}, {#} and # based on
the sum of the modes, and pre-multiplying by the
transpose of the modal shapes matrix, it is obtained
equation (17).

[@]" [M] [®] x G + [2]7 [C] x [®] X Gt

[@]7 x [K] x [®] x g = — [®]" x [M] x {1} x &o
(17)
Based on equation ( [?]) and the property of or-

thogonality, it may be defined equation (18) for each
vibration mode.

(6] [M] [6n] X G+ [9n]" [C] X [60] X dnt

[¢n]T X [K] x [¢n] X ¢ = — [d’n]T x [M] x {¢} x &o
(18)
The relative dynamic responses (position, velocity
and acceleration) are obtained at each time instant for

each modal coordinate, using equation (18) and with
the help of Newmark “s method of linear acceleration.

2.9. Design of the program

2.9.1. Matlab programming language

The ATH Dynamic responses program has been devel-
oped in the software Matlab, which is a programming

language with a friendly working environment. It en-
ables working in console mode (it only presents results
based on expressions introduced) and in routine mode
(programs with coded commands and enables to make
and store programs) [10] and [22].

The most important Matlab feature is that it en-
ables handling vectors and matrices directly, and be-
sides the coding is not complex [10].

The project was made in routine mode, since a
program with coded commands was run and a GUIDE
created, which enabled improving the graphical user
interface.

2.9.2. ATH Dynamic responses program

The ATH Dynamic responses program is based on
Newmark “s numerical method considering linear ac-
celeration for calculating the response of systems with
1 DOF in modal analysis.

Geometrical features, rigidity of the frame legs and
mass considered as concentrated in each floor should be
entered into the program. Based on this it is obtained
relative dynamic responses (position, velocity and ac-
celeration) and modal properties of the physical model
(frequencies, modes and percentage of participative
mass).

In order to understand the functionality of the
program, Figure 7 indicates its flow diagram.
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Figure 7. Flow diagram of the ATH Dynamic responses program

2.10. Data processing

The data obtained by the accelerometers need to be
corrected by baseline and by filtering unwanted fre-
quencies. To achieve this, it was used a low pass But-
terworth filter [23], with a cut-off frequency of 16 Hz.
The AB signal program [24] was used for this purpose.

2.11. Instrumentation

In general, the instrumentation to measure the dy-
namic response of a structure consists of the installa-
tion of sensors that record dynamic responses (velocity,
acceleration and displacement) [25].

The purpose of the instrumentation is registering
the response in front of displacement, internal motions,
earthquakes and observing the behavior of structures
or models [24].

The acquisition of the project data was carried
out by means of PCB Piezotronics accelerometers [25],
which have the frequencies and sensitivities shown in
Table 1.

Table 1. Properties of the accelerometers

Type Frequency  Sensitivity
Normal 2Hz-5kHz 100 m V/g
accelerometer
Normal 1Hz - 5kHz 100m V/g
accelerometer
Miniature 1Hz - 4kHz 100 m V/g
accelerometer

2.12. Shake Table II

The test in a shake table is the most direct way to
simulate the dynamic behavior of structures. The mod-
els will be limited to be not very heavy, of scaled
dimensions and not very rigid [26].

Shake Table IT was originally developed by the
University Consortium on Instructional Shake Tables
(UCIST) [6]. It is a mechanical device, which consists
of an upper plate of 45.7 x 45.7 cm? where the model
is anchored, a lower plate of 60,9 x 45,7 cm? and a DC
motor with a power of 400 W. The table withstands a
load of 7.5 kg and an acceleration of 2.5 g and enables
motions with displacements up to +7.62 cm [6].
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2.13. Materials

3
e 120234 K0 s p 33 kg — :IA
The equipment used for carrying out this project is o n
constituted by a Shake Table II [6] and accelerometers __B___kB_ 2
PCB Piezotronics [25], described in sections 2.11 and g E; 7.
2.12. e 20234 kG N o0 aakg b =I-A
The experimental models are constituted by acrylic & B
and stainless steel. The features and dimensions of the kB =
materials are specified in Tables 2 and 3. ‘g E N =
L S0 23 2ke b -0 amkg b| :A
&4 2
Table 2. Specifications of the materials for frame legs and . —g— —— %‘ — 8
floors éEk 1‘:5‘1 g
Material Thickness Width Lengh 1 E SHASE TABLE o SR '
(m) (m) (m) (m?) (kN /m?) Front view Side view
Frame
Stainless R4 0,06 03  1,715E-12  180EF! Figure 9. Dimensions of the model with 3 degrees of free-
Steel dom and mass concentration
aFCIr‘;"l’lrc 0,01 0,06 0,31

Table 3. Mass of frame legs and floors

Material Mass (g)

Floors Acrilico 232-234
Frame Acero 102
model 1 inoxidable

Frame . Ac.ero 204
model 2 inoxidable

Frame Acero 9299
model 3 inoxidable

Figure 8 presents drawings of the experimental
models that were built. Figure 9 indicates the dimen-
sions of the model with 3 degrees of freedom and,
besides, how the mass concentration for the theoreti-
cal model was made, based on the experimental model,
and Figure 10 shows an image of the real model.

Model 3

Model 2

Model 1

MESAVIBRATORIA MESA VIBRATORIA WESAVIBRATORIA

Figure 8. Models of one, two and three floors

Figure 10. Experimental model of the model with 3 de-
grees of freedom

3. Results and discussion

Results show frequencies, damping factors, absolute
accelerations of the experimental models and their
comparison with the theoretical results provided by
the ATH Dynamic responses program.
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3.1. Experiment 1. Determining the frequen-
cies and damping factors of each model

The frequencies were obtained theoretically using the
ATH Dynamic responses program and verified with
the SAP2000 software [27]. For obtaining the experi-
mental frequency and the damping factor, a sweep of
frequencies was performed with the Shake Table II.
It was carried out a baseline and filtering correc-
tion process, as explained in section 2.10. Based on
this, the fast Fourier transform available in Matlab [23]
was used, and transmissibility vs. frequency plots were
obtained, as shown in Figures 11, 12 and 13, where
the abscissa of each peak in the plot corresponds to
the frequency of each mode and, besides, it enables

obtaining the damping factor applying equation (8).
The percentage error in the analytical frequency was
obtained with respect to the experimental acceleration.

Model 1
Transmissibility vs. Frequency
100 )

e Mode 1
= 4,241 4319 _ _ Frequency
= .

‘% 50
g
g
&

3.5 4 4.5 5

Frequency (Hz)

Figure 11. Frequency and bandwidth for the model

Model 2
Transmissibility vs. Frequency
. 100 Floor 1
b g -==-- Mode 1
% - — 2 6-9;-- Mode 2
g . e 6.92 7,04
E o 1 ,\/‘f\
1 2.5 3 4.5 6.5 1.5
Frequency (Hz)
(a)
Model 2
Transmissibility vs. Frequency
150
B Floor 2
B 100 2,61 —--—Mu:el
2 2,59 I 2.62 ----Mode2
g .
e : 691~ L
S ! O L 704
1 2 4 5 6 7 8
° Frequency (Hz)
(b)
Figure 12. Frequency and bandwidth for model 2 (a) floor 1 and (b) floor 2
Model 3
Transmissibility vs. Frequency
60 Floor 1
E‘ —==-=-Model
£ 40 —=—=-Mode2
7
-z ---- Mode3
Z
g~ 7.61
& 7.54 7.65
0 AN
1 2 3 5 7 8 9
Frequency (Hz)
(a)
Model 3
Transmissibility vs. Frequency
100
1.65 Floor 2
B 80 == == Mode 1
3 |1,64 1,66 - === Mode2
=60 = === Mode 3
@
g 40
g 5.01 7.61
s i 4,98 7,52
i ; 98 T 5,03 P N 1,64
1 2 3 5 7 8 9
Frequency (Hz)

(b)
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Model 3
Transmissibility vs. Frequency

120
100 155
g0 | 1.66 1,64
60
40
20 !

Transmissibility

[ 4,98

Frequehcy (Hz)

Floor 3
=== Mode 1

----Mode2
= ===Mode 3

5.01
5,03 7,61

\ 7.51 i — 7.64

7 8 9

(c)

Figure 13. Frequency and bandwidth for model 3 (a) floor 1, (b) floor 2 and (c) floor 3

3.1.1. Frequencies and damping factor for
model 1

Figure 11 shows the plots that enabled obtaining the
theoretical frequency and the damping factor, and
Table 4 displays these values.

The peak of Figure 11 shows that the experimental
frequency for model 1 is 4.28 Hz.

Table 4. Frequency and damping for model 1

ATH
Dynamic Exp. Damping
responses
Mode f (Hz) f (Hz) % error & (%)
1 4,58 4,28 6,55 1,44

3.1.2. Frequencies and damping factor for
model 2

Figures 12 (a) and (b) show the plots that enabled
obtaining the frequencies and damping factors for the
two modes, and Table 5 presents the results.

The peaks of Figures 12 (a) and (b) are the experi-
mental frequencies, which for mode 1 is 2.61 Hz and
for mode 2 6.99 Hz.

Table 5. Frequency and damping for model 2

ATH
Dynamic  Exp. Damping
responses
Mode f (Hz) f (Hz) % error & (%)
1 2,61 2,60 0,38 0,57
2 6,53 6,99 7,07 0,85

3.1.3. Frequencies and damping factor for
model 3

Figures 13 (a), (b) and (c¢) show the plots that enabled
obtaining the frequencies and damping factors for the
3 modes, and Table 6 presents the results.

The peaks of Figures 13 (a), (b) and (c) are the
experimental frequencies, which for mode 1 is 1.65 Hz,
for mode 2 5.01 Hz and for mode 3 7.61 Hz.

Table 6. Frequency and damping for model 3

ATH
Dynamic  Exp. Damping
responses
Mode f (Hz) f (Hz) % error & (%)
1 1,91 1,65 13,61 0,55
2 5,25 5,01 4,57 0,49
3 7,36 7,6 3,26 0,85

3.2. Experiment 2. Dynamical response of the
model to floor acceleration

The dynamical response was obtained when subjecting
the experimental models to a scaled seismic record.
The seismic record used was El Centro and its scal-
ing was carried out using the software of the Shake
Table II; the record was scaled based on maximum
displacement of 4 cm.

The results presented in the following correspond
to absolute accelerations, since these are the ones pro-
vided directly by the accelerometers, and they were
compared with the absolute accelerations obtained
from the ATH Dynamic response program, based on
expression (19):

T =1+, (19)

Where # is absolute acceleration, i relative accel-
eration and &, acceleration in the base.

3.2.1. Base acceleration record for Model 1: El
Centro earthquake

Figure 14 shows the experimental acceleration and the
theoretical acceleration for model 1, and Table 7 the
maximum theoretical and experimental accelerations.

Table 7. Maximum accelerations for model 1

Acceleration (m/s?) Floor 1

Theoretical

8,707

% error

13,711

Experimental

7,657
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Figure 14. Experimental and theoretical absolute acceleration for model 1, with acceleration in the base of the El

Centro earthquake

3.2.2. Base acceleration for Model 2: El Centro
earthquake

Figures 15 (a) and (b) show the experimental accelera-
tion and the theoretical acceleration for model 2, and

Table 8 the maximum theoretical and experimental
accelerations.

Table 8. Maximum accelerations for model 2

Acceleration (m/s?)

Theoretical ~Experimental % error

Piso 1 7,585 8,678 12,586
Piso 2 8,989 9,021 0,353

Model 2 floor 1

—
(=]

o

1
Y

| Acceleration (mv/s?)
(=]

time (s)

(a)
Model 2 floor 2
Absolute acceleration vs time
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Figure 15. Experimental and theoretical absolute acceleration for model 2,

Centro earthquake: (a) floor 1, (b) floor 2

3.2.3. Base acceleration for Model 3: El Centro
earthquake

Figures 16 (a), (b) and (c) show the experimental ac-
celeration and the theoretical acceleration for model 3,
and Table 9 the maximum theoretical and experimen-
tal accelerations.

Absolute acceleration vs time

Experimental acceleration
,,,,,,,,,,,,,, Theoretical acceleration

10 12 14 16

Experimental acceleration
Theoretical acceleration

10 12 14 16

Table 9. Maximum accelerations for model 3

Acceleration (m/s?)

Theoretical ~Experimental % error
Piso 1 5,225 5,033 3,824
Piso 2 5,297 5,698 7,043
Piso 3 5,967 5,845 2,095

with acceleration in the base of the El
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Model 3 floor 1
Absolute acceleration vs time
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Figure 16. Experimental and theoretical absolute acceleration for model 3, with acceleration in the base of the El

Centro earthquake: (a) floor 1, (b) floor 2, (c) floor 3

When graphically comparing the models, it was
observed that the experimental acceleration has larger
amplitude in most of the cases, however, in general
the shapes of the experimental and theoretical plots
are similar.

4. Conclusions

Based on the experimental results and the theoreti-
cal results of the models, it may be argued that the
method which uses the Fourier transform to obtain
the frequencies is appropriate, because the results are
similar between experimental and theoretical frequen-
cies.

The damping factor obtained by means of the band-
width is consistent in terms of the values obtained per
floor, since each floor provided similar values of damp-
ing factor per mode, and such factors were useful for
theoretical modeling, and thus being able to obtain
the damping matrix and the dynamical responses.

The experimental modeling of the model helped
us to observe in a real manner how a model behaves
when a sinusoidal acceleration or an acceleration of
a scaled earthquake is applied, and enabled verifying
the values obtained analytically with respect to the
experimental ones.

As future work, it may be implemented to obtain
the dynamical properties of three-dimensional systems
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that exhibit irregularity in plant and elevation.

A mismatch may be observed between experimental

and theoretical responses regarding absolute accelera-
tions, due to the consideration of the time 0 in which
the experimental models were at rest.
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