
Scientific Paper / Artículo Científico

https://doi.org/10.17163/ings.n27.2022.04
pISSN: 1390-650X / eISSN: 1390-860X

Evaluation of AIoT performance in
Cloud and Edge computational models

for mask detection
Evaluación de AIoT en modelos

computacionales en la nube y en el
borde aplicado a la detección de

mascarillas
Felipe Quiñonez-Cuenca1,∗ , Cristian Maza-Merchán1 ,

Nilvar Cuenca-Maldonado1 , Manuel Quiñones-Cuenca1 , Rommel Torres1 ,
Francisco Sandoval1 , Patricia Ludeña-González1

Received: 15-11-2021, Received after review: 20-12-2021, Accepted: 27-12-2021, Published: 01-01-2022

1,∗Departamento de Ciencias de la Computación y Electrónica, Universidad Técnica Particular de Loja, Loja, Ecuador.
Corresponding author ✉: fdquinones@utpl.edu.ec.

Suggested citation: Quiñonez-Cuenca, F.; Maza-Merchán, C.; Cuenca-Maldonado, N.; Quiñones-Cuenca, M.; Torres, R.;
Sandoval, F. and Ludeña-González, P. (2022). «Evaluation of AIoT performance in Cloud and Edge computational
models for mask detection». Ingenius. N.◦ 27, (january-june). pp. 32-48. doi: https://doi.org/10.17163/ings.n27.2022.04.

Abstract Resumen
COVID-19 has caused serious health damage, infect-
ing millions of people and unfortunately causing the
several deaths around the world. The vaccination
programs of each government have reduced those
rates. Nevertheless, new coronavirus mutations have
emerged in different countries, which are highly conta-
gious, causing concern with vaccination effectiveness.
So far, wearing facemasks in public continues be-
ing the most effective protocol to avoid and prevent
COVID-19 spread. In this context, there is a demand
of automatic facemask detection services to remind
people the importance of wearing them appropriately.
In this work, a performance evaluation of an AIoT
system to detect correct, inappropriate, and non- face-
mask wearing, based on two computational models:
Cloud and Edge, was conducted. Having as objective
to determine which model better suits a real envi-
ronment (indoor and outdoor), based on: reliability
of the detector algorithm, use of computational re-
sources, and response time. Experimental results show
that Edge-implementation got better performance in
comparison to Cloud-implementation.

La COVID-19 ha provocado graves daños a la salud:
centenas de millones de personas infectadas y varios
millones de fallecidos en el mundo. Los programas
de vacunación de cada Gobierno han influido en el
decaimiento de estos índices, pero con la aparición de
nuevas mutaciones del coronavirus más contagiosas,
la preocupación sobre la efectividad de las vacunas
se hace presente. Frente a esta situación el uso de
mascarillas sigue siendo eficaz para prevenir la trans-
misión y contagio de la COVID-19. Lo que ha gener-
ado una creciente demanda de servicios de detección
automática de mascarillas, que permita recordar a
las personas la importancia del empleo de estas. En
este trabajo se plantea un análisis del rendimiento de
un sistema AIoT para la detección del uso correcto,
incorrecto y sin mascarilla basado en dos modelos
computacionales de Cloud y Edge, con la finalidad de
determinar qué modelo se adecua mejor en un entorno
real (interior y exterior) sobre la base de la confiabi-
lidad del algoritmo, uso de recursos computacionales
y tiempo de respuesta. Los resultados experimenta-
les demuestran que el modelo computacional Edge
presentó un mejor desempeño en comparación con el
Cloud.

Keywords: AIoT, COVID-19, Cloud Computing,
Edge Computing, Face mask detection, YOLO

Palabras clave: AIoT, COVID-19, computación en
la nube, computación de borde, detección de máscara
facial, YOLO

32

https://doi.org/10.17163/ings.n27.2022.04
https://orcid.org/0000-0001-7221-4700
https://orcid.org/0000-0002-2078-8267
https://orcid.org/0000-0002-2611-1310
https://orcid.org/0000-0002-2932-1524
https://orcid.org/0000-0003-2313-0118
https://orcid.org/0000-0001-5167-0256
https://orcid.org/0000-0002-8909-4837
fdquinones@utpl.edu.ec
https://doi.org/10.17163/ings.n27.2022.04


Quiñonez-Cuenca et al. / Evaluation of AIoT performance in Cloud and Edge computational models for mask

detection 33

1. Introduction

Humanity is experiencing a health crisis due to COVID-
19, caused by the new SARS-CoV-2 coronavirus strain
[1], which has unexpectedly and dramatically affected
people’s health, economy and lifestyle worldwide. The
origin of the virus was identified at the end of 2019
in the city of Wuhan, China. Subsequently, the virus
spread worldwide and on March 11, 2020 it was de-
clared by the World Health Organization (WHO) as a
global COVID-19 pandemic [2]. SARS-CoV-2 attacks
people’s immune systems. Although most people who
get infected with the virus have mild and moderate
symptoms, another significant group of people need
hospitalization, and even the use of ICU beds (In-
tensive Care Unit). This virus is transmitted mainly
through microscopic droplets of cellular plasma ex-
pelled by the infected person when coughing, sneezing,
or exhaling [3].

Twenty months of pandemic have marked the his-
tory of human health, which is evidenced by official
statistical data. To date, December 3, 2021, globally,
according to WHO statistics (2021), a little more than
two hundred and sixty-three million cases have been
confirmed, of which more than five million died. On
the continental level, America has the highest rate
of infection in relation to the other five continents,
nearly 97 million confirmed cases have been reported,
of which more than two million people died. While in
Ecuador, more than five hundred and twenty-seven
thousand confirmed cases are recorded and more than
thirty-three thousand have died [4].

To neutralize the COVID-19 pandemic, world lead-
ers made crucial decisions, leading to collateral prob-
lems from which humanity is still recovering. Measures
include global confinement, implementation of safety
protocols, and even the invention and distribution of
vaccines.

At the local level, in mid-March 2020, the Ecuado-
rian government declared a state of emergency, which
involved restrictions on mobility, isolation, and border
closures, which severely affected the country’s econ-
omy. Companies had to abruptly halt their production,
and government, educational and financial institutions
were forced to continue their activities online.

After four and a half months of confinement, the
country’s economy did not resist and confinement re-
strictions were gradually eliminated; but biosafety pro-
tocols had to be implemented by the community to
work face-to-face. To prevent the spread of SARS-
CoV-2 virus, each individual is required: compulsory
use of masks, avoid conglomerations, keep distance,
wash hands regularly with soap, and continuously dis-
infect commonly used surfaces with alcohol. Strict
monitoring of biosafety protocols has been the key to
preventing the virus, since initially, there was no spe-
cialized medicine and vaccine to protect people because

SARS-CoV2 was new. Several COVID-19 vaccines are
currently available.

The Pan American Health Organization (PAHO)
[5], on its official website, has made available to the ge-
neral public information related to COVID-19 vaccines,
including Pfizer/BioNTech, Moderna, AztraZeneca,
Janseen, Sinopharm, and Sinovac. Although there
are several vaccines, the vaccination process does not
progress as planned. According to statistics [6], to date
(December 2021) 54.9% of the world’s population has
received at least one dose of the COVID-19 vaccine.
More than eight billion doses have been administered
worldwide, and thirty-four million doses are adminis-
tered each day.

Simultaneously with the global vaccination pro-
cess, new variants of the COVID-19 virus have been
identified in different regions of the world. The high
number of infected people increases the risk of virus´s
mutations. The more the virus spreads, the smaller
changes occur in its genetic code, allowing it to survive
and reproduce. Multiple variants circulate globally, for
example: the UK variant, known as Alpha; the South
African variant, known as Beta; the Brazilian variant,
known as Gamma, the Indian variant, known as Delta;
and the last one known as Omicron detected in South
Africa. According to experts, viruses mutate all the
time, and most changes are irrelevant, but others can
make the disease more infectious or threatening, and
these mutations tend to dominate [7].

The goal of vaccination is to achieve global collec-
tive immunity to prevent SARS-CoV-2 from continuing
to mutate, becoming more resistant to current vaccines
and causing more periods of mass mortality. However,
PAHO, at the end of the first week of August, due to a
high rate of contagion of the variant (VOC) Delta, in
several countries, inside and outside America, recom-
mends reviewing contingency plans and be prepare for
an eventual increase in cases and hospitalizations, em-
phasizing in that report that social distancing, the use
of masks, and the use of antiseptic solutions continue to
be the most effective measures to reduce transmission
of this and all variants. From the above data, it can be
deduced that COVID-19 pandemic has not yet ended,
the future is uncertain. Research and innovation are
therefore needed to provide technological contributions
to society in the fight against COVID-19 pandemic.

This paper describes the design, implementation,
and performance analysis of a system based on two
cloud and edge computing models, applied to real-time
mask usage detection by using artificial intelligence
of things (AIoT). The importance of system develop-
ment and evaluation lies in the fact that it analyzes
response time, detection algorithm performance, and
computational resources.

The article is organized as follows. Section II de-
scribes the proposed method, and details the com-
putational designs and components used. Section III



34 INGENIUS N.◦ 27, enero-junio of 2022

presents the results of the analysis of computer models.
Finally, Section IV shows the conclusions and future
work.

2. Materials and methods

The research was divided into five phases (see Figure
1) through an experimental design and quantitative
approach. Then, the activities that were carried out
in each of the phases are detailed:

• State-of-the-art analysis of enabling technologies
for AIoT, related works and detection algorithms
to detect the use of masks in real time.

• Design of an architecture and determination of
hardware and software components for deploy-
ment of computing models in the cloud and on
the edge of the network.

• Development in the stage in which software and
hardware components are integrated, and the
real-time mask detection and execution algo-
rithm implemented in both computational mod-
els.

• Evaluation of the stage in which a controlled
scenario and real scenarios are determined to
perform tests that allow validating the perfor-
mance of the computational models.

• Analysis of results to determine the performance
of resources used in both computer models. Met-
rics collected include the demand for computing
resources (CPU, RAM, memory, and storage),
and system response time. To analyze the perfor-
mance of the detection algorithm, the accuracy,
precision, revocation, harmonic mean, and mean
of the average accuracy are evaluated.

1. Análisis

2. Diseño

3. Desarrollo 5. Resultados

3. Evaluación

Tecnologías AIoT
Algoritmos de

detección

Arquitectura
Hardware y

software

Implementación
Integración

Escenario
Métricas

Desempeño
Análisis de
métricas

Figure 1. Methodology

2.1. Architecture

For developing the system, a comparison strategy was
designed to allow the two computer models to be
equipped with the same or similar capabilities. How-
ever, because each implementation has intrinsic char-
acteristics that differentiate them from each other,
the comparison strategy was designed with two struc-
tures, one common to both computational models and
the one specific to each one. In Figure 2 can be ob-
served the layout of each of the hardware and software
components that are part of the system architecture,
segmented into: scenario, sensors and actuators, com-
putational models, and actuators.

The system architecture integrates an IP camera to
obtain the video from the test scenario, which is sent
via Real Time Transmission Protocol (RTSP) to the
two computer models. Video processing is performed
by applying the real-time object detection algorithm
based on YOLOv3 («You only look once v3») to deter-
mine correct and incorrect use and no mask. The Edge
computational model performs real-time inference and
presents the results on a screen by ticking the faces
depending on the result with «correct mask», «incor-
rect mask» and «no mask». Audible and visual alarms
are generated, and it is then sent to a web platform
in the cloud to store the processed images. While the
processing is carried out in the Cloud computational
model and the result can be visualized through a de-
vice and the inference is stored as detailed in the Edge
model.



Quiñonez-Cuenca et al. / Evaluation of AIoT performance in Cloud and Edge computational models for mask

detection 35

Figure 2. System architecture

2.1.1. Common structure for Cloud and Edge

According to [8], comparative analysis is emphasized
in the broad explanation of similarities and differences
of phenomena to provide valid reasons in a topic or
area of interest. Consequently, this section describes
the "similarities" of the comparison strategy between
Cloud and Edge computing models. To evaluate the
performance of the AIoT algorithm, it was discussed
the use of the same transmission protocol, codec video,
visual sensor (IP camera), training dataset, training
algorithm, evaluation dataset, and execution algorithm
for real-time mask detection in both models

2.1.2. Transmission protocol

Currently, there are several streaming protocols such
as Real Time Streaming Protocol (RTSP), Real-Time
Messaging Protocol (RTMP), Secure Reliable Trans-
port (SRT), and WebRTC (RTC – Real Time Commu-
nication) [9]. In selecting the transmission protocol to
be used in the comparative strategy of this research,
the results of recent research and the compatibility of
the transmission protocol with the surveillance video
cameras available in the market were taken into ac-
count. According to [10], one of the most widely used
streaming video protocols is RTSP, especially in envi-
ronments with bandwidth restrictions, network conges-
tion, energy efficiency, cost, reliability, and connectivity.
Whereas, according to [11], the RTMP protocol offers
better performance in live video streaming compared
to the RTSP protocol.

When reviewing the compatibility of transmission
protocols with the visual sensors (video surveillance
cameras) offered in the market, cameras were found
with two RTMP and RTSP protocols. To implement
the RTMP protocol push mechanism, another com-
ponent (a streaming server) must be added to the
network, altering the flow of data across the network
and the comparison architecture, and impacting the

traffic analysis result. On the other hand, the RTSP
protocol pull mechanism is a convenient option to im-
plement since both Cloud and Edge computing models
can be connected to the same visual sensor (IP surveil-
lance camera). Therefore, RTSP was selected as the
transmission protocol for the comparative strategy,
because it is better suited to the proposed comparison
architecture.

2.1.3. Codec video

According to [11], the H.264 codec video is one of
the most functional compression standards in Internet
of Things (IoT) applications because it occupies less
capacity when stored or transmitted. Also, the video
compression standards of the H.264 codec are based
on motion compensation. This codec is highly recom-
mended for recording, compressing and distributing
video files in real time [12]. Also, the H.264 codec video
supports the RTSP protocol and is available in many of
the visual sensors offered on the local market. Finally,
based on the latter, it is determined that the H.264
codec is compatible with the proposed architecture.

2.1.4. Mask detection algorithm

AIoT combines two approaches, namely IoT and Ar-
tificial Intelligence (AI). [13]. IoT approach refers to
the concept of interconnecting objects to the network,
so that information can be collected through sensors
automatically, without the exclusive intervention of
people [14]. While AI refers to the approach of provid-
ing intelligence machines through algorithms, so that
they can make decisions based on previously received
training [15]. By uniting both approaches, an attempt
is made to adhere a cognitive layer to the network, to
achieve resource optimization through the autonomy
that can be provided to machines to analyze situations
and make decisions.

Media processing is a major challenge for AIoT



36 INGENIUS N.◦ 27, enero-junio of 2022

algorithms due to the large amount of data that this
activity involves and due to the limited resources of
IoT. In this case study "real-time mask use detection",
the aim is to evaluate the performance of AIoT al-
gorithms in Cloud and Edge computing models. For
which, in the state-of- the-art it was identified that
the technical solution for this type of object recog-
nition problems is AIoT algorithms, based on Deep
Learning with CNN (Convolutional Neural Network)
architectures [16].

In terms of real-time object detection, the liter-
ature highlights the detector models of a stage for
better performance compared to two stages. YOLO
algorithm, a single-stage detector model, is character-
ized by a significant difference in speed compared to
the two-stage R-CNN (Region Based Convolutional
Neural Networks) and Fast-R-CNN models. YOLO is
a thousand times faster than R-CNN and a hundred
times faster than Fast-R-CNN [16]. In contrast to the
approach adopted by YOLO’s predecessor object de-
tection algorithms, which reuse classifiers to perform
detection, YOLO proposes the use of an end-to-end
neural network that makes predictions of bounding
boxes and class probabilities simultaneously in a single
iteration [14].

For the present strategy of comparing the perfor-
mance of AIoT algorithms between the Cloud and
Edge computational models, it was decided to select
the reduced version of YOLOv3, identified as YOLOv3-
tiny for two reasons. The first is that this version is a
small model ideal for deployments where computing re-
sources are limited; i.e., it is compatible with the Edge
deployment architecture, which is conducive to equi-
table comparison. While the second reason is because it
is the latest version recognized as official, which means
that it has access to the official support of the develop-
ment community. YOLO model is widely implemented
in solutions that require real-time object identification,
due to its architecture and operation [16–19].

YOLOv3 was proposed as a solution that uses mod-
ern CNN, which uses residual networks and omits con-
nections. According to [14], authors of YOLOv3, this
version uses the much more complex Darknet-53 convo-
lutional neural network as the model’s spine, 106-layer
with residual blocks and superior sampling networks.
This architecture enables the YOLOv3 model to pre-
dict at 3 different scales, and extract feature maps at
layers 82, 94, and 106 for these predictions.

2.1.5. Dataset

A training and validation image set is required for the
detection algorithm preparation process. This work
requires training the real-time object detector algo-
rithm YOLOv3-tiny, so that it learns and detects three
classes. In other words, for the implementation of the
present case study "detection of mask use" the detec-

tion algorithm of people with 1) correct use of mask, 2)
no mask and 3) incorrect use of mask will be trained.
Figure 3 illustrates the dataset with the three required
classes.

Figure 3. Dataset with three types: correct use of mask,
no mask, incorrect use of mask

The dataset must contain information relevant to
the context, i.e., images of people using masks of dif-
ferent colors and models for the first class; images of
people of different ages and ethnicity for the second
class; and images of people using the mask incorrectly,
below the nose or mouth, for the third class.

For algorithm training, the dataset was customized
by randomly selecting images from two public datasets
Kaggle Medical Mask Dataset [20] and Masked Face
(MAFA) dataset [21], because such datasets contain
real images of people in different backgrounds, unlike
other datasets that contain all three classes, but cor-
respond only to the person’s face. According to [17],
in-context information is another approach used to
improve detection accuracy or speed. Additionally, for
the training of the detector algorithm, it is planned to
divide the custom dataset according to the hold-out
technique, which consists of dividing the dataset into
two subsets of 80% for training and the remaining 20%
of the data for testing [22]. In this way, the performance
of the algorithm on unseen data can be evaluated af-
ter training [23]. While, in the execution phase of the
training of the neuroneal network specialized in the
detection of masks, the technique «transfer learning»
is used, which consists of transferring knowledge of
a pre-trained model in a general context to a more
specific one [24], i.e., for the detection of the 3 classes
(with mask, without mask and incorrect mask) the
base model of pre-trained YOLOv3-tiny will be used
for detecting 80 classes of objects.

2.2. Execution algorithm in real time

Algorithm 1 describes by pseudo code the process for
detecting all three classes (correct use of mask, no
mask, and incorrect use of mask). This algorithm has



Quiñonez-Cuenca et al. / Evaluation of AIoT performance in Cloud and Edge computational models for mask

detection 37

as input the flow of images (video stream) captured
by the visual sensor of the network, while the output
will be the detection(s) of people classified in the three
options.

Before the detection process, it is necessary to pre-
pare each frame of the video stream, by resizing the
frame to multiple scales based on the YOLOv3-tiny
architecture. Each frame is converted to RGB (red,
green, blue) channels. Finally, the frame and its cap-
ture date are stored. All detections are then stored
in the "Face" array using YOLOv3- tiny. Then, it is
necessary to evaluate if there is any detection in the
current frame; i.e., if the "Face" array contains any
elements (higher than zero).

In case that there is no detection in the current
frame, the process is completed, and the next frame
of the video stream is worked on. Whereas, if there is
at least one detection in the face array, it is required
to evaluate for each detection the class to which it
belongs to, to highlight its bounding box and assign
the corresponding class label (ID - identification). In
case that: 1) If the ID detection belongs to the "with
mask" class, the green bounding box is highlighted; 2)
if the ID detection belongs to the "without mask" class,
the red bounding box is highlighted; and 3) if the ID
detection corresponds to the "wrong mask" class, the
orange bounding box is highlighted. In addition, for
each detection, the detection bounding box must be
cut and stored in JPG format with the date and time
of detection.

Algorithm 1 Mask detector from real-time video.
RTSP stream. Detection of mask foreach <Frame
in Stream> do

Redimension Frame;
Convert Frame to RGB;
Store date and time;
Identify Faces in the Frame using YOLOv3-tiny;
if Faces > 0 then

foreach Face in Faces do
switch Face do

case Correct use of mask do
Highlight the Frame in gree

case No mask do
Highlight the Frame with red

case Incorrect use of mask do
Highlight the Frame with OR-
ANGE

Cut Face and store Frame as a JPG file;
Store Face, Dateandhour in the database;

2.3. Edge architecture design

Figure 4 illustrates the architecture design of the Edge
computational model. The central processing unit is
the Jetson Nano component, which has as input the

video stream captured by the network’s visual sensor
(TPLINK tapo C310 V2 IP camera).

Figure 4. Architecture of the Edge computational model

The AIoT algorithm for real-time mask usage de-
tection is executed on the central processing unit. Sub-
sequently, four outputs occur on the system actuators
in case of a detection: 1) the transmission of the images
corresponding to the detections to a cloud repository,
2) an audible alert that highlights the detection class,
3) the activation of LEDs depending on the detected
class, and 4) the display of the detection on a screen.
Finally, Figure 5 shows the inference results in the
Edge computational model.

Figure 5. Inference results in the Edge computational
model

2.4. Cloud architecture design

Cloud platforms allow end users to deploy their AIoT
solutions based on real-time video streaming, analysis,
and storage, including Amazon Web Service (AWS)
Kinesis Video Stream (KVS) and SafetyRadar [25].
The first platforms are characterized by offering dif-
ferent types of object detection, for example, houses,
cars, animals, etc. The detection of different objects
to be implemented requires technical knowledge to use
these platforms, while the SafetyRadar platform spe-
cializes in the detection of masks and other biosafety
implements, offering plug and play technology, hence



38 INGENIUS N.◦ 27, enero-junio of 2022

no technical expertise is required for deployment. How-
ever, all three platforms are paid.

For the present work, a custom architecture was
designed for the cloud computing model, with control
over the different network components. Generally, plat-
forms do not allow the extraction of metrics required
for comparison, which is the aim of this investigation.

Figure 6 illustrates the architecture design of the
Cloud computational model. The video stream cap-
tured by the network’s visual sensor is accessed via the
RTSP transmission protocol from the local network.
While two components are arranged in the cloud us-
ing a container architecture, specifically Docker [25],
enabling the deployment and replication process of
the deployment to be streamlined. The first container
processes the video stream, while the second container
publishes the results of the processing. In container 1,
after the multimedia data, the input data is processed
according to business logic, with the execution of the
AIoT algorithm for the detection of mask use in real
time. The results of such processing are then stored;
in this case, the images with the detections performed.
Finally, events made in a log are saved. Meanwhile
container 2 presents the results so that end users can
connect to the server and use the information they
want through a Website.

Figure 6. Architecture of Cloud computational model

Figure 7 shows the inference results of the Cloud
computational model.

Figure 7. Inference results of the Cloud computational
model

2.5. Technology used

Table 1 shows a summary of the technology used in
this research. The first column identifies the technol-
ogy used, the second column corresponds to the Cloud
or Edge computational model where the technology is
applied; the third column indicates which component
to use. The last column provides justification for the
use of each technology.

Table 1. Summary of technologies used

Tecnology Model Component Justificación
JetPack
SDK
4.5.1 [26]

Edge Processing
Includes Jetson Linux Driver Pack (L4T) with
Linux operating system and CUDA-accelerated
libraries (TensorRT and cuDNN), for AI APIs.

Python3
[27]

Edge
Cloud Processing

Base language for video processing, results pub-
lication, and integration with vision and AI
libraries.

Deepstream
SDK
5.1 [28]

Edge Processing

This Nvidia SDK provides a framework for
building GPU-accelerated video analytics ap-
plications that run on the NVIDIA Jetson
Nano platform.

Deepstream-
services-
library
[29]

Edge Processing Python3 library required to make use of the
deepstream SDK functionalities.

MySQLdb
[30] Edge Results Provides the Python API to access the MySQL

database server.
rclone
[31] Edge Results Required to manage files in cloud storage.

Docker
[32] Cloud Processing

It allows automating the deployment of the
application in the containers located in the
cloud.

Camgear
[33] Cloud Processing

It is a high-performance, cross-platform video
processing framework that enables real-time
video processing.

OpenCV
[34] Cloud Processing

Library that allows to process artificial vision
in Python3. This facilitates in the first instance
the reading of the trained model of YOLOv3-
tiny, and later in the detection for each pro-
cessed frame.

Firebase
[35] Cloud Processing It allows to store the Results of the detections

in real time.

Flask [36] Cloud Results Framework that is used for the creation of the
web application.

Bootstrap
[37] Cloud Results Library for the design of the application that

allows publishing the Results.

2.6. Experimental configuration

The image tagging and custom dataset splitting pro-
cesses to be used in mask detection algorithm are



Quiñonez-Cuenca et al. / Evaluation of AIoT performance in Cloud and Edge computational models for mask

detection 39

performed using the Python3 programming language.
The dataset was divided with a distribution of 80%
(716 images) for training and the remaining 20% (179
images) for testing (see Figure 8). The images in the
custom training dataset contain the detection of one
person or more people in the training, representing
3070 people with correct use of mask, 675 without
mask and 113 with incorrect use of mask.

Figure 8. Dataset distribution for training and validation

The Google Colab [38] tool was used to run the
AIoT algorithm training process, which has three in-
puts: 80% of the dataset images, YOLOv3-tiny config-
uration file (see Table 2 for configuration parameters),
and YOLOv3-tiny pre-trained weight file with COCO
dataset [39].

Table 2. Configuration training values for neuronal net-
work

Detail Calculus Value
Number of classes Correct use of

mask, no mask
and incorrect use
of mask

classes=3

Maximum batch size 30000 (10000 per
class)

max_batches =
30000

Dimensions of input image width × height =
416 × 416

width=416
height=416

Number of filters in the
convolutional later before
YOLOv3-tin layer

(classes+5)*3 =
24

filters=24

Batch size and its sub-
divisions for training

batch=64
subdivisions=2

The training process lasted 16 hours, obtaining a
mean accuracy (mAP) of 75.95%. Finally, the trained
neuronal network was validated with the remaining
20% of the dataset (79 images), representing 162 people
with correct use of mask, 42 without mask and 10 with
incorrect use of mask. Table 3 shows the validation
results.

Table 3. Validation results of the detection algorithm

Class Precisión
Correct use of mask 85,97 %
No mask 68,72 %
Incorrect use of mask 73,15 %
mAP 73,15 %

3. Results and discussion

This section presents the results of the different ex-
periments in two real scenarios to determine the per-
formance of the two computational models. In this
context, two environments were selected. The first in-
door scenario corresponds to the entrance of people to
a local church to participate in the Sunday Eucharist.
For the second outdoor scenario, it was applied on a
street with a high rate of pedestrian circulation, due to
religious tourism to the Sanctuary of El Cisne between
August and September, located in the province of Loja,
southern Ecuador.

In both indoor and outdoor environments, it was
monitored for a period of one hour, of which for a more
detailed analysis the first 15 minutes are taken for the
quantitative analysis of the results. In this context, 82
people entered indoors and 229 circulated outdoors.
Figure 9 illustrates the total number of detections in
indoor and outdoor environments.

(a)

(b)

Figure 9. Flow of people: a) indoor, b) outdoor

The results of the experiment show that the flow of
people in the outdoor environment doubled the indoor,
having a mean income of 6 people in the internal envi-
ronment and 12 people in the external environment.
The count was carried out through the Camlytics tool.
Figure 10 shows detection examples in the real indoor
and outdoor scenarios.



40 INGENIUS N.◦ 27, enero-junio of 2022

3.1. Evaluation metrics

To evaluate the performance of the AIoT algorithm
in Cloud and Edge computing models, the "Real-time
Biosafety Mask Usage Detection" case study has been
considered as evaluation metrics:

• Detection algorithm reliability: According to [16],
[18], [40–42], determining the performance of the
detection algorithm is based on four metrics:
accuracy, precision, sensitivity, harmonic mean,
mean of the average accuracy.

• Computational resources: it is recommended to
analyze the resources occupied by the application
based on [41]] and the ISO/IEC 25023 standard,
analyzing network traffic, RAM memory, CPU
and storage.

• Response time: This is another parameter that
allows to measure the time it takes for the system
to respond according to [41] and by ISO/IEC
25023 standard.

Figure 10. Indoor and outdoor live stage results

3.1.1. Accuracy of detection algorithm

To evaluate the accuracy of ML-based classifiers (Ma-
chine Learning) a confusion matrix is used to know how
effective the system is. According to [40], a confusion
matrix, also known as an error matrix, is a method
for 10 to summarize the performance of the result of
a classification model, showing the number of correct

and incorrect predictions. Four metrics are calculated
from the confusion matrix [16], [18], [40–42]: Accuracy
(A: Accuracy, see Equation 1), precision (P: precision,
see Equation 2), sensitivity or recall (R: Recall, see
Equation 3), and the harmonic mean (fβ , see Equa-
tion 4). Additionally, three classes are identified due
to the AIoT Edge and Cloud implementations of this
experiment (MC: Correct use of mask, SM: No mask
and MI: Incorrect use of mask), it is also necessary
to calculate the average of the mean accuracy (mAP,
see Equation 5) from the mean accuracy (AP) of each
class.

A = T P +T N
(T P +F P )+(T N+F N) (1)

P = T P
T P +F P (2)

R = T P
T P +F N (3)

fβ = (1+β2)∗(P ∗R)
β2∗P +R

(4)

mAP = APMC +APSM +APMI

3 (5)
Where: TP (True Positive) is when the observation

is positive and is predicted to be positive; FN (False
Negative) is when the observation is positive, but is
predicted to be negative; TN (True Negative) is when
the observation is negative and is predicted to be neg-
ative; and FP (False Positive) is when observation is
negative, but is predicted to be positive, while β is
used to assign different weights to the measures used
in Equation 4 [42]. In the present work, β was assigned
a value of 1. Table 4 shows the results obtained when
deploying Edge and Cloud models in real-world sce-
narios. This is done by purging repeated detections in
each environment.

Table 4. Confusion matrix

Edge model indoors
True value

MI SM MC

Prediction
MC 2 29 191
SM 0 36 9
MI 3 3 0

Edge model outdoors

Prediction
MC 2 15 170
SM 0 52 30
MI 1 1 0

Cloud model indoors

Prediction
MC 5 36 165
SM 7 29 12
MI 1 2 6

Cloud model outdoors

Prediction
MC 3 45 123
SM 2 41 40
MI 1 2 2



Quiñonez-Cuenca et al. / Evaluation of AIoT performance in Cloud and Edge computational models for mask

detection 41

Table 5 shows the results obtained after evaluating
the Edge and Cloud implementations for detecting the
use of masks by individuals in both indoor and outdoor
environments, in time and real-world scenarios.

Table 5. Results obtained for A, P, R and fβ

Accuracy (A) %

Clase Cloud Edge
indoor outdoor indoor outdoor

MC 76,7 64,7 85,2 82,6
SM 77,4 65 84,9 82,9
MI 90,7 94,8 97,9 98,7
Media 81,6 74,8 89,3 88,1
Precision (P) %
MC 80 71,9 86 90
SM 60,4 49,4 80 63,4
MI 11,1 20 50 50
mAP 50,5 47,1 72 67,8
Recall (R) %
MC 90,1 74,5 95,5 85
SM 43,3 46,6 52,9 76,5
MI 7,6 16,7 60 33,3
Media 47 45,9 69,5 64,8
Harmonic mean (fβ) %
MC 84,8 73,2 90,5 87,4
SM 50,4 48 63,7 67,9
MI 9 18,2 54,5 40
Media 48,1 46,5 69,6 65,1

Table 4 shows the percentages obtained with re-
spect to the accuracy, precision, recall, and harmonic
mean metrics. Accuracy refers to the number of pos-
itive predictions that were correct; in this context,
the results show that the Edge model is 10.5% more
accurate than the Cloud model. On the other hand,
precision refers to the percentage of positive cases
detected; the results indicate that indoor accuracy
is higher than outdoor in both models. The Edge is
39.9% more accurate than Cloud. Cloud accuracy is
lower than Edge as some frames are lost or distorted
during transmission in some cases. Regarding the re-
call metric, which refers to the proportion of positive
cases that are correctly identified by the algorithm, the
results indicate that the Edge model predicted 20.7%
more correct than Cloud. Finally, the harmonic mean
metric was used when the dataset is not balanced by
providing inputs from different classes to the classifier.
In this context, the results show that insufficient de-
tections of the “incorrect use of mask” class have a
dramatic impact on data distribution.

3.2. Use of resources

Among the resources analyzed for comparing the two
Cloud and Edge computing models according to [41]
and ISO/IEC 25023, are network traffic, RAM, CPU,

and disk storage usage. Since the results indicated a
better development of the masks detector indoors, an
analysis of the use of resources in this environment is
performed in the following sections. In addition, Table
6 shows the characteristics of the hardware components
on each of the two models, Cloud and Edge.

Table 6. Hardware characteristics of Cloud and Edge

Component Cloud Edge
GPU — NVIDIA Maxwell archi-

tecture with 128 NVIDIA
CUDA® cores

CPU Intel Xeon Processor (Sky-
lake, IBRS) / 8 núcleos /
2100 MHz

Quad-core ARM Cortex-
A57 MPCore processor

Memory
RAM

31 GB virtual 4 GB 64-bit LPDDR4,
1600MHz 25.6 GB/s

Storage 246 GB 16 GB eMMC 5.1
Connectivity Gigabit Ethernet Gigabit Ethernet, Wi-Fi
Screen — HDMI 2.0 and eDP 1.4

3.2.1. Network traffic

Network traffic measurements generated by streaming
video from the IP camera on the Cloud model, and
images from the Jetson Nano on the Edge model were
taken using the Wireshark protocol analyzer on the in-
bound interface of the server hosting the Cloud model
and the Web platform. Traffic measurements were ob-
tained using video encoding parameters at 1008 Kbps,
observing the behavior of the traffic in Mbps volume.
It can be observed in Figure 11 the network traffic
generated, where the blue upper curve represents the
traffic from the IP camera to the Cloud computing
model using the RSTP protocol; the lower green curve
represents the traffic generated by the transmission
of images processed with the detection algorithm on
the Edge to the web platform (measured in Mbps).
This information is represented as series over time,
which corresponds to the first 15 minutes of indoors
monitoring.

As a result, it can be seen that network traffic is
significantly higher in the Cloud model compared to
Edge model. The average network traffic in the cloud
is 0.86 Mbps, with a maximum of 4.91 Mbps; while the
average network traffic in the Edge is 0.07 Mbps, with
a maximum of 0.26 Mbps. This is because all frames of
the visual sensor in the Cloud model are transmitted
without pre-filtering information; in the Edge model,
images are only transmitted when there is a detection,
which prevents network congestion.



42 INGENIUS N.◦ 27, enero-junio of 2022

Figure 11. Video transference rate to the Cloud and pro-
cessed images from the Edge to the Web platform

3.2.2. Memoria RAM

Los modelos computacionales Cloud y Edge se carac-
terizan por la diferencia en la cantidad de recursos
disponibles. Particularmente, en las implementaciones
de este trabajo se dispuso de 4 GB de RAM en el
modelo Edge y de 31 GB de RAM en el modelo Cloud.
Los resultados indican (ver Figura 12) que el uso de
RAM en el modelo Edge fluctuó entre 2,41 GB como
mínimo, 2,43 GB como máximo, con una media de
2,42 GB. Mientras que en el modelo Cloud, el uso
de RAM fluctuó entre 10,7 GB como mínimo, 12 GB
como máximo, con una media de 11,55 GB. A par-
tir de los datos obtenidos, se puede interpretar que,
una vez designados los recursos al proceso YOLO, no
existe mayor crecimiento durante la ejecución de las
detecciones tanto en Cloud como Edge.

3.2.3. CPU

Regarding the processing capacity of the Cloud and
Edge computing models, they differ significantly. From
Figure 13, it is determined that the Edge model with
the Jetson Nano integrates a 1.43 GHz processor, of
which CPU use during the first 15 minutes of process-
ing fluctuated between 22.95% minimum, 62.01% max-
imum, and an average of 29.59%. Whereas in the Cloud
model, the server had a 4.8GHz processor, of which
CPU utilization fluctuated between 1.75% minimum,
7.49% maximum, and an average of 3.31%. Therefore,
it can be interpreted that because the Edge model
has fewer resources, the effort is greater at processing
detections. Conversely, because the Cloud model has
better resources, the effort is minimal when running
the mask usage detector.

(a)

(b)

Figure 12. Use RAM memory during the first 15-
monitoring minutes indoors. A) Edge model, b) Cloud
model

(a)

(b)

Figure 13. CPU use during the first 15-monitoring min-
utes indoors, a) Edge model, b) Cloud model



Quiñonez-Cuenca et al. / Evaluation of AIoT performance in Cloud and Edge computational models for mask

detection 43

3.2.4. Storing

Disk space usage of detections grows significantly in
both Cloud and Edge models. In the Cloud, this re-
source can increase in case of a larger demand by
updating the cloud server lease. Conversely, Edge does
not allow any increased storage capacity as it is limited
in nature. The results show that disk space usage is
similar in both Cloud and Edge models, approximately
90.7 MB indoors and 200.5 MB outdoors. It is impor-
tant to note that the mask detector stores only the
detection frame not the context or the entire image,
so the storage capacity is optimized.

3.3. Response time

According to [41], and the ISO/IEC 25023 standard,
the response time of a system is another metric that
allows to evaluate the performance of a system. In this
research, the response time value was used to obtain
the events marked in the log files to identify the instant
the image entered the model, and then to calculate
the time elapsed until its publication. In this context,
to calculate the response time in the Edge implemen-
tation, the time between the moment the detection
occurs until the system finishes with the sound alert
was considered. Figure 14a graphically shows the re-
sponse times recorded on the Edge during the first 20
detections indoors, averaging 2.37 seconds of response.

On the other hand, measures from the time the
capture occurs on the visual sensor to the publication
of the results on the web page must be done to calcu-
late the response time in the Cloud model. However,
what it is posible to capture accurately is the time
span from cloud discovery to portal publishing; so,
in the Cloud time an average value of 2 seconds was
added from the transfer rate for a 300 kB image with
a 1920 × 1080 resolution, which corresponds to the
time it takes for the visual sensor to transmit the video
to the cloud, which is indirectly proportional to the
bandwidth provided by the network. The bandwidth
that was available for the implementation of the Cloud
model was 25Mbps. Figure 14b graphically shows the
response times recorded in the Cloud model during
the first 20 detections indoors, averaging 3.45 seconds
of response.

(a)

(b)

Figure 14. Response time, a) Edge model, b) Cloud model

3.4. Discussion of the results

After deploying the Cloud and Edge implementations
in real-world scenarios, it is observed that the AIoT al-
gorithm (specialized in identifying the use of biosafety
masks) performed better in indoors on both models
due to controlled flow (in one direction) and exclusive
of people who constituted the entrance to the church.
While the performance of the same AIoT algorithm
was less efficient in outdoors in both implementations,
due to the uncontrolled flow of people (in several di-
rections) and not exclusive of people; other objects
such as cars, bicycles, and even animals were part of
the images captured by the visual sensor. AIoT algo-
rithms for real-time object identification, using the
Edge computational model, presented better perfor-
mance compared to the Cloud model.

YOLO is a recommended tool for implementing
solutions using AI in real-life scenarios that require im-
mediate action. In particular, the results of this work
yield 78.2% accuracy metrics on the Cloud model and
88.7% on the Edge model. Although there is a decrease
in the classifier accuracy with 48.8% in the Cloud and
69.9% in the Edge, it was proven that the accuracy
in both models reduces especially outdoors, due to
the fact that the neural network was not sufficiently
trained to identify small objects. Additionally it was
noted that the detector also reduces when there are
multiple people in the same frame to be detected in
both models. To solve this problem a greater num-
ber of images containing multiple detections could be
included in the training dataset.

The quality of the media flow and input for video
processing in Cloud and Edge deployments impact



44 INGENIUS N.◦ 27, enero-junio of 2022

the performance of the AIoT algorithm. The real-time
mask detector was tested with two visual sensor resolu-
tions, high (1920 × 1080) and low (640 × 360), allowing
to conclude that detection fails on small objects at a
low resolution; however, large (nearby) objects are
correctly identified in real time (see Figure 15), since
frame processing does so smoothly.

(a)

(b)

Figure 15. Mask detection at different resolutions: a) 1920
× 080 y b) 640 × 360

The relationship between video streaming speed
(frames per second) and its relevance in the business
context of the AIoT solution needs to be evaluated. In
this research, it was observed that it was not necessary
to evaluate all the frames of the input. The AIoT al-
gorithm first processed all received frames (15 frames
per second), and too many detections belonging to the
same person were obtained as output. Hence, it was
concluded that it was necessary to filter the number
of frames input to the detector (1 frame per second)
and thus avoid processor saturation. In other words,
the resources required to process each of the frames
are unnecessary. To overcome this problem, frames
per second are reduced, which consists of processing
a certain frame for a certain interval. This resulted
in optimization of processing resources when filtering
input and storage output, as the number of detections
for the same person dropped significantly, for example,
from 1 GB to 100 MB.

Finally, having experimented with both Cloud and
Edge models, several challenges are identified for fu-
ture work. There is inconsistency between the detection
speed of Machine Learning based sorting algorithms
(ML) and the technology that allow the storage and
management of actuators on the network. For example,

the biosafety mask usage detector works at a rate of
15 detections per second, but when wanting to store
this information, the transaction takes one detection
per second, thus causing congestion. Current database
managers do not reach the speed required when work-
ing with AI-based classifiers. The same happens with
visual or auditory actuators; it does not matter AIoT
algorithm to detect multiple objects simultaneously if
the time it takes for the speaker or display to show
that information to the public requires one second per
object.

3.5. System evaluation in a real environment

To assess the effectiveness and feasibility of the pro-
posed method, a prototype system equipped with
YOLOv3 Tiny is presented, which can be deployed at
the entrances of public places. The prototype system
based on the Edge computational model is illustrated
in Figure 16, as well as the integration and implementa-
tion of the various hardware and software components,
including an IP camera, a Jetson Nano computer, and
a display with HDMI interface

Figure 16. Implementation of the system

In Figure 5, the performance of the prototype can
be proved for all three cases (correct use of mask, no
mask, and incorrect use of mask). Also, visual alerts in
the evaluation scenarios did not get people’s attention
when the AIoT algorithm provides detection feedback.
Initially when people crossed the camera’s viewing
angle, the screen displayed the output of the labeled
and painted bounding boxes with the class detected.
It was evident that the purpose of the screen was not
clear to the passerby, so some would greet or leave the
camera’s action area. This changed when adding the
sound alerts that got people’s attention. Users heard
the following messages: "correct use of mask ", "no
mask detected", or "incorrect use of mask"; depending
on the type of detection performed by the algorithm,
pedestrians identified the purpose of the deployment



Quiñonez-Cuenca et al. / Evaluation of AIoT performance in Cloud and Edge computational models for mask

detection 45

intuitively, and many of them corrected the incorrect
use or absence of the mask.

4. Conclusions

In this research, a system for detecting masks in real
contexts has been designed, implemented and evalu-
ated. The Edge computational model outperformed
the Cloud model with 39.9% in the accuracy metric,
related with the percentage of positive cases detected;
and 10.5% on the accuracy metric, which refers to the
percentage of positive predictions that were correct.
In addition, there are advantages and disadvantages
inherent to the intrinsic characteristics of each model.
One of the advantages of cloud deployments is that
they have high storage and processing capabilities,
and if needing to increase RAM, disk, or processing
resources, the model offers the scalability feature to
the system. However, the disadvantage of the Cloud
model is the high consumption of the network, since
the sequence of frames is transmitted in video without
prior data filtering. While in the Edge model, despite
having limited resources, this disadvantage is offset
by the fact that it is possible to perform a debugging
of information, allowing applications to adjust to the
amount of available RAM, processing, and bandwidth
resources, where it could be observed that once the
resources are allocated, the consumption of these re-
sources does not fluctuate drastically.

In addition, on this side of the network, visual
or auditory actuators can be used for human inter-
actions in the context in which the model is being
used. YOLOv3 application is an appropriate option
for specialized real-time object detection in either the
Cloud or Edge computational model. YOLOv3, as a
single-stage object detector model, directly classifies
and predicts the target at each location in the entire
original image.

All of these features distinguish YOLOv3 from
other detector models; however, accuracy and preci-
sion metrics are achieved when conducting a training
process with a broad set of data that must contain
multiple detections in the same image, which must be
captured in different contexts and scales. In addition,
the dataset can be diversified through the use of image
augmentation techniques.

Finally, the analysis of the system in persuading
people to wear masks is proposed for future work. The
integration of additional sensors into the system to
analyze air quality especially indoors is also considered.

Acknowledgments

The authors would like to thank the Private Techni-
cal University of Loja (UTPL) for funding this work

through the second call «FUNDING DEGREE AND
MASTER RESEARCH - 2020».

References

[1] R. Aragón Nogales, I. Vargas Almanza, and M. G.
Miranda Novales, “COVID-19 por SARS-CoV-2:
la nueva emergencia de salud,” Revista Mexicana
de Pediatría, vol. 86, pp. 213–218, 2020. [Online].
Available: https://dx.doi.org/10.35366/91871

[2] WHO, “Listings of WHO’s response to COVID-
19,” World Health Organization. [Online]. Avail-
able: https://bit.ly/3mAZ6LH

[3] ——, “Vías de transmisión del virus de la
COVID-19: Repercusiones para las recomenda-
ciones relativas a las precauciones en materia de
prevención y control de las infecciones.” [Online].
Available: https://bit.ly/3epu4Sq

[4] OMS, “Who coronavirus (COVID-19) dash-
board,” 2021. [Online]. Available: https:
//bit.ly/3mDAO3r

[5] OPS, “Vacunas contra la COVID-19,” 2020.
[Online]. Available: https://bit.ly/3z0JGFs

[6] H. Ritchie, E. Mathieu, L. Rodés-Guirao, C. Ap-
pel, C. Giattino, E. Ortiz-Ospina, J. Hasell,
B. Macdonald, D. Beltekian, M. Roser, and
et al., “Coronavirus (COVID-19) vaccinations -
statistics and research,” 2020. [Online]. Available:
https://bit.ly/3sEmtro

[7] C. Costa and C. Tombesi, “COVID-19: Cuánto
tiempo se demoró en encontrar la vacuna para
algunas enfermedades (y por qué este coronavirus
es un caso histórico),” 2020. [Online]. Available:
https://bbc.in/3pEV0Eh

[8] “Comparative research grant,” Anthropology News,
vol. 36, no. 8, pp. 43–43, 1995. [Online]. Avail-
able: https://anthrosource.onlinelibrary.wiley.
com/doi/abs/10.1111/an.1995.36.8.43.1

[9] S. S. Bibak Sareshkeh, E. Magli, and P. Dal Zovo,
“Combined ict technologies for supervision
of complex operations in resilient communi-
ties,” Master’s thesis, 2020. [Online]. Available:
https://bit.ly/3HaioPE

[10] I. Santos-González, A. Rivero-García, J. Molina-
Gil, and P. Caballero-Gil, Implementation
and Analysis of Real-Time Streaming Proto-
cols, vol. 17, no. 4, 2017. [Online]. Available:
https://doi.org/10.3390/s17040846

https://dx.doi.org/10.35366/91871
https://bit.ly/3mAZ6LH
https://bit.ly/3epu4Sq
https://bit.ly/3mDAO3r
https://bit.ly/3mDAO3r
https://bit.ly/3z0JGFs
https://bit.ly/3sEmtro
https://bbc.in/3pEV0Eh
https://anthrosource.onlinelibrary.wiley.com/doi/abs/10.1111/an.1995.36.8.43.1
https://anthrosource.onlinelibrary.wiley.com/doi/abs/10.1111/an.1995.36.8.43.1
https://bit.ly/3HaioPE
https://doi.org/10.3390/s17040846


46 INGENIUS N.◦ 27, enero-junio of 2022

[11] A. Nurrohman and M. Abdurohman, “High
performance streaming based on H264 and
real time messaging protocol (RTMP),” in
2018 6th International Conference on In-
formation and Communication Technology
(ICoICT), 2018, pp. 174–177. [Online]. Available:
https://doi.org/10.1109/ICoICT.2018.8528770

[12] S. Basu, “What are video streaming codecs
& container formats: Muvi live server,” 2020.
[Online]. Available: https://bit.ly/3ErJPCZ

[13] J. S. Katz, “Aiot: Thoughts on artificial in-
telligence and the internet of things,” IEEE
Internet if Things, 2019. [Online]. Available:
https://bit.ly/3sBwGEZ

[14] J. Redmon and A. Farhadi, “Yolov3: An incremen-
tal improvement,” ArXiv, vol. abs/1804.02767,
2018. [Online]. Available: https://bit.ly/3psJLyp

[15] A. M. Porcelli, “La inteligencia artificial y la
robótica: sus dilemas sociales, éticos y jurídicos,”
Derecho global. Estudios sobre derecho y justicia,
vol. 6, pp. 49–105, 2020. [Online]. Available:
https://doi.org/10.32870/dgedj.v6i16.286

[16] X. Jiang, T. Gao, Z. Zhu, and Y. Zhao,
“Real-time face mask detection method
based on YOLOv3,” Electronics, vol. 10,
no. 7, p. 837, 2021. [Online]. Available:
https://doi.org/10.3390/electronics10070837

[17] S. Sethi, M. Kathuria, and T. Kaushik,
“Face mask detection using deep learning:
An approach to reduce risk of coronavirus
spread,” Journal of Biomedical Informatics,
vol. 120, p. 103848, 2021. [Online]. Available:
https://doi.org/10.1016/j.jbi.2021.103848

[18] D. González Dondo, J. A. Redolfi, R. G. Araguás,
and D. García, “Application of deep-learning
methods to real time face mask detection,”
IEEE Latin America Transactions, vol. 19,
no. 6, pp. 994–1001, 2021. [Online]. Available:
https://bit.ly/3pw7DkM

[19] S. Sethi, M. Kathuria, and T. Kaushik, “A
real-time integrated face mask detector to
curtail spread of coronavirus,” Computer Mod-
eling in Engineering & Sciences, vol. 127,
no. 2, pp. 389–409, 2021. [Online]. Available:
https://doi.org/10.32604/cmes.2021.014478

[20] I. Vich, “Medical masks dataset images
tfrecords,” Kaggle, 2020. [Online]. Available:
https://bit.ly/3er0tb8

[21] S. Ge, J. Li, Q. Ye, and Z. Luo, “MAFA,” 2018.
[Online]. Available: https://bit.ly/3FBC52o

[22] S. Yadav and S. Shukla, “Analysis of k-Fold
Cross-validation over hold-out validation on colos-
sal datasets for quality classification,” in 2016
IEEE 6th International Conference on Advanced
Computing (IACC), 2016, pp. 78–83. [Online].
Available: https://doi.org/10.1109/IACC.2016.25

[23] E. Allibhai, “Holdout vs. Cross-validation in
machine learning.” 2018. [Online]. Available:
https://bit.ly/3z2TbE0

[24] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu,
H. Xiong, and Q. He, “A comprehensive survey on
transfer learning,” Proceedings of the IEEE, vol.
109, no. 1, pp. 43–76, 2021. [Online]. Available:
https://doi.org/10.1109/JPROC.2020.3004555

[25] L. Herrera-Izquierdo and M. Grob, “A per-
formance evaluation between docker container
and virtual machines in cloud computing archi-
tectures,” Maskana, vol. 8, pp. 127–133, 2017.
[Online]. Available: https://bit.ly/3z12oNf

[26] NVIDIA, “Jetpack sdk 4.5.1 archive,” 2021.
[Online]. Available: https://bit.ly/32BxzT1

[27] Python, “Welcome to python.org,” 2021. [Online].
Available: https://bit.ly/3qqTd4Q

[28] NVIDIA, “Quickstart guide - deepstream 6.0
release documentation,” 2021. [Online]. Available:
https://bit.ly/3sDTa8s

[29] ProminenceAI, “Prominenceai/deepstream-
services-library: A shared library of on-
demand deepstream pipeline services for Python
and C/C++,” GitHub. [Online]. Available:
https://bit.ly/3pyxM2y

[30] MongoDB, “The application data plat-
form,” MongoDB. [Online]. Available: https:
//bit.ly/3qrRsUL

[31] N. Craig-Wood, “Rclone syncs your files
to cloud storage,” 2014. [Online]. Available:
https://bit.ly/3JlPNsu

[32] Docker, “Empowering app development for
developers,” 2020. [Online]. Available: https:
//www.docker.com/

[33] A. Thakur, C. Clauss, C. Hollinger,
V. Boivin, B. Lowe, M. Schoentgen,
and R. Bouckenooghe, “abhiTronix/vidgear:
VidGear v0.2.3,” Oct. 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.5602375

[34] OpenCV. (2021) Opencv courses holiday sale.
[Online]. Available: https://bit.ly/3ezvAS1

[35] Google Developers, “Firebase,” 2020. [Online].
Available: https://bit.ly/3JinCeh

https://doi.org/10.1109/ICoICT.2018.8528770
https://bit.ly/3ErJPCZ
https://bit.ly/3sBwGEZ
https://bit.ly/3psJLyp
https://doi.org/10.32870/dgedj.v6i16.286
https://doi.org/10.3390/electronics10070837
https://doi.org/10.1016/j.jbi.2021.103848
https://bit.ly/3pw7DkM
https://doi.org/10.32604/cmes.2021.014478
https://bit.ly/3er0tb8
https://bit.ly/3FBC52o
https://doi.org/10.1109/IACC.2016.25
https://bit.ly/3z2TbE0
https://doi.org/10.1109/JPROC.2020.3004555
https://bit.ly/3z12oNf
https://bit.ly/32BxzT1
https://bit.ly/3qqTd4Q
https://bit.ly/3sDTa8s
https://bit.ly/3pyxM2y
https://bit.ly/3qrRsUL
https://bit.ly/3qrRsUL
https://bit.ly/3JlPNsu
https://www.docker.com/
https://www.docker.com/
https://doi.org/10.5281/zenodo.5602375
https://bit.ly/3ezvAS1
https://bit.ly/3JinCeh


Quiñonez-Cuenca et al. / Evaluation of AIoT performance in Cloud and Edge computational models for mask

detection 47

[36] Pallets, “Flask web development, one drop
at a time,” Pallet, 2010. [Online]. Available:
https://bit.ly/3Hemy9h

[37] J. T. Mark Otto. (2021) Build fast, respon-
sive sites with bootstrap. [Online]. Available:
https://bit.ly/32Nl5rK

[38] Google. (2021) Colaboratory. Google Research.
[Online]. Available: https://bit.ly/3EC3mk0

[39] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Per-
ona, D. Ramanan, P. Dollár, and C. L. Zitnick,
“Microsoft coco: Common objects in context,”
in Computer Vision – ECCV 2014, D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars, Eds.
Springer International Publishing, 2014, pp. 740–
755. [Online]. Available: https://bit.ly/3sxpZUu

[40] M. S. Aslanpour, S. S. Gill, and A. N. Toosi,
“Performance evaluation metrics for cloud, fog

and edge computing: A review, taxonomy, bench-
marks and standards for future research.” Internet
of Things, vol. 12, p. 100273, 2020. [Online]. Avail-
able: https://doi.org/10.1016/j.iot.2020.100273

[41] M. Ashouri, F. Lorig, P. Davidsson, and
R. Spalazzese, “Edge computing simulators
for iot system design: An analysis of qual-
ities and metrics,” Future Internet, vol. 11,
no. 11, p. 235, 2019. [Online]. Available:
https://doi.org/10.3390/fi11110235

[42] F. Oliveira-Teixeira, T. P. Donadon-Homem,
and A. Pereira-Junior, “Aplicación de in-
teligencia artificial para monitorear el uso
de mascarillas de protección,” Revista Cien-
tífica General José María Córdova, vol. 19,
no. 33, pp. 205–222, 2021. [Online]. Available:
https://doi.org/10.21830/19006586.725

https://bit.ly/3Hemy9h
https://bit.ly/32Nl5rK
https://bit.ly/3EC3mk0
https://bit.ly/3sxpZUu
https://doi.org/10.1016/j.iot.2020.100273
https://doi.org/10.3390/fi11110235
https://doi.org/10.21830/19006586.725

	Introduction
	Materials and methods
	Architecture
	Common structure for Cloud and Edge
	Transmission protocol
	Codec video
	Mask detection algorithm
	Dataset

	Execution algorithm in real time
	Edge architecture design
	Cloud architecture design
	Technology used
	Experimental configuration

	Results and discussion
	Evaluation metrics
	Accuracy of detection algorithm

	Use of resources
	Network traffic
	Memoria RAM
	CPU 
	Storing

	Response time
	Discussion of the results
	System evaluation in a real environment

	Conclusions

