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Abstract Resumen
Cardiovascular diseases such as Acute Myocardial
Infarction is one of the 3 leading causes of death in
the world according to WHO data, in the same way
cardiac arrhythmias are very common diseases today,
such as atrial fibrillation. The ECG electrocardio-
gram is the means of cardiac diagnosis that is used in
a standardized way throughout the world. Machine
learning models are very helpful in classification and
prediction problems. Applied to the field of health,
ANN, and CNN artificial and neural networks, added
to tree-based models such as XGBoost, are of vital
help in the prevention and control of heart disease.
The present study aims to compare and evaluate
learning based on ANN, CNN and XGBoost algo-
rithms by using the Physionet MIT-BIH and PTB
ECG databases, which provide ECGs classified with
Arrhythmias and Acute Myocardial Infarctions re-
spectively. The learning times and the percentage of
Accuracy of the 3 algorithms in the 2 databases are
compared separately, and finally the data are crossed
to compare the validity and safety of the learning
prediction.

Las enfermedades cardiovasculares, como el infarto
agudo de miocardio, son una de las tres principales
causas de muerte en el mundo según datos de la OMS.
De forma similar, las arritmias cardíacas¸ como la
fibrilación auricular, son enfermedades muy comunes
en la actualidad. El electrocardiograma (ECG) es el
medio de diagnóstico cardíaco que se utiliza de forma
estandarizada en todo el mundo. Los modelos de
aprendizaje automático son muy útiles en problemas
de clasificación y predicción. Aplicadas al campo de
la salud, las redes neuronales artificiales (ANN) y las
redes neuronales convolucionales (CNN) en conjunto
con modelos basados en árboles como XGBoost, son
de vital ayuda en la prevención y control de enfer-
medades del corazón. El presente estudio tiene como
objetivo comparar y evaluar el aprendizaje basado
en los algoritmos ANN, CNN y XGBoost mediante
el uso de las bases de datos de ECG Physionet MIT-
BIH y PTB, que proporcionan ECG clasificados con
arritmias e infartos agudos de miocardio, respecti-
vamente. Se comparan por separado los tiempos de
aprendizaje y el porcentaje de exactitud de los tres
algoritmos en las dos bases de datos, y finalmente se
cruzan los datos para comparar la validez y seguridad
de la predicción.
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1. Introduction

A multiplicity of devices (personal computers, smart-
phones, tablets, cell phones, etc.) are used today to
accumulate and process bigdata about human behavior.
This bigdata is available for a multiplicity of purpose
including medicine [1,2]. Mobile Health (mHealth) and
smart devices enable early detection and prompt in-
tervention for patients with Atrial Fibrillation (AF).
Single- and multi-lead ECG, photoplethysmography
(PPG), and oscillometric, with validated diagnostic
capability, can be integrated within the clinical prac-
tice to detect AF. Existing clinical practice guidelines
suggest that pulse assessment with ECG screening for
the high-risk population, for patients >65 years of
age, is appropriate to reduce complications. However,
easy-to-use, and affordable consumer health and smart
devices may be a good alternative screening tool not
only for the elderly population with comorbidities, but
also for the general low-risk population with frequent
monitoring [2–7].

mHealth devices that are capable of monitoring
heart rate and/or heart rhythm come in multiple forms
such as, smartphone apps, smart watches, rings, neck-
laces, wearable sensors, and patches [8–10]. Companies
have created products capable of producing a point-
of-care ECG registries, such as the AliveCor Kardia
Monitor series of devices [8]. In a large cohort study
conducted in Hong Kong, research on the Kardia single-
lead ECG device found that a review cardiologist con-
firmed that 65% of AFs detected by the device were
accurate. In this study of more than 10000 patients
with a mean age of 78 years, the number needed to
make an accurate new diagnosis of AF was 145 par-
ticipants [8].36 The sensitivity and specificity of the
Kardia monitor were found to be 99, 6% and 97.8%,
respectively [11].

The term Ubiquitous Health (u-Health) defined by
Weiser as the integration of computing into human
actions and behaviors at “anytime” and “anywhere”
has been gaining prominence [1,2]. The main attribute
of u-Health is the capacity for interaction between indi-
viduals and devices in such a way that the technology
is transparent to the user [12]. It is not clear what is
the best algorithm to detect cardiovascular diseases by
means of u-Health devices. The technology needs to
be robust, reliable and with low computational cost so
that it can be run directly in the devices even when
offline. The goal of this paper is to evaluate the best
alternative for arrhythmia detection with u-Health
Devices.

This work is the product of an ongoing collabo-
ration between the University of Guayaquil and the
University of Villanova where multiple artificial intel-
ligence strategies are being developed for real time
detection of arrhythmias. The current work uses ex-
isting arrhythmia databases to validate the strategies,

future work intends to process real time data from
wearable devices. Results from this research are highly
encouraging and will be further discussed throughout
the article.

2. Materials and Methods

2.1. Methodology

Two Physionet databases of ECG MIT electrocar-
diograms (arrhythmias) with 109444 records (normal
21891 and abnormal 87553) and PTDB (infarcts) with
14550 records (normal 4045 and abnormal 10505) were
used. MIT database has 4 categories Normal “N” 0,
Supraventricular “S” 1, Ventricular “V” 2, Ventricular
Fibrillation “F” 3, Other unclassified “Q” 4. PTDB
database has 2 categories “N” 0 and with cardiac prob-
lems “A” 1. The SMOTE was used to regularize the
categories and avoid Overfitting and Underfitting.

The 80% of the records are used for training and
20% for tests, 20% of the 80% of training is taken
again to evaluate the data prediction. This process was
carried out separately for both the MIT and PTDB
databases, using in both cases ANN artificial neural
networks and CNN convolutional neural networks in
addition to the decision tree-based algorithm called
XGBoost or extreme gradient boosting, the 3 algo-
rithms were evaluated with the 2 databases.

2.2. Cardiovascular Diseases and Artificial In-
telligence

Cardiovascular diseases (CVD) are the leading cause
of mortality worldwide, accounting for 31% of all
deaths [13]. One of the main causes is acute myocar-
dial infarction (AMI). There is an emerging need to
study a wide range of cutting-edge techniques for its
analysis and diagnosis of heart diseases. To judge the
specific situation of the patient, doctors often look at
the ECG (electrocardiograph) signal to get enough
information to help them diagnose. Many researchers
have applied Machine Learning algorithms to study
the arrhythmia [14] classification problem. Advances in
data processing, storage capacity and Machine Learn-
ing ML methods have been transforming the field of
medicine, including cardiology [15].

AF is one of the most common types of arrhyth-
mias which is characterized by a rapid and irregular
heartbeat [?]. Ischemic heart disease (IHD) is a condi-
tion in which there is an inadequate supply of blood
and oxygen to a part of the heart muscle [16]. This
condition usually occurs when there is an imbalance
between oxygen supply and demand to the heart mus-
cle (myocardium), usually due to atherosclerotic heart
disease [17]. Patients usually do not show typical signs
and symptoms (asymptomatic) until ischemic heart
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disease manifests as angina, myocardial infarction, or
sudden cardiac death [18].

Heartbeat classification, in ECG analysis, is the
most common way to automate arrhythmia [19] di-
agnoses. The common machine learning-based ECG
learning flow includes signal noise analysis, heartbeat
recognition, feature extraction, and heartbeat classi-
fication. For deep learning, feature extraction can be
replaced by storing fragments of beats from a complete
ECG sequence [20]. Existing ECG signal identification
algorithms in the literature incorporate three impor-
tant points: preprocessing, classification, and imbal-
ance of the data set. To analyze characteristics that can
be directly related to physiological factors on the de-
velopment of diseases, three Deep Learning algorithms
were considered: CNN convolutional neural network,
ANN artificial neural network, and the reinforced tree
eXtreme Gradient Boost o XGBoost.

Artificial Neural Networks are learning algorithms
that can identify complex relationships in data. ANNs
are designed to mimic human nervous system. Typical
ANN’s are comprised of 3 layers: input, output, and
hidden layers. Each layer is made up of neurons [21].
Convolutional neural networks (CNN), recurrent neu-
ral networks (RNN), and naïve Bayes (NB) are used as
classifiers. There are techniques that use different com-
binations such as Discrete Wavelet Transform (DWT)
and ANN combination were obtained for ECG arrhyth-
mia classification [22]. When the number of features is
greater than the number of samples, ANNs can handle
multiple classes, there is no effect of large data sets on
ANNs, and extensive memory is not required [23].

ANN-based study classifies IHD using heart rate
variability (HRV) parameters along with a clinical data
such as left ventricular ejection fraction (LVEF), age,
and gender. A series of networks with different number
of input nodes (varying between 7 and 15), hidden
nodes (between 2 and 10) and two output nodes were
tested. The training and test ranges were respectively
75% and 25% of the total amount of data [24]. Various
investigators have also used artificial neutral network
(ANN)-based approaches for diagnostic classification
of ECG signals [16].

Modern Deep Neural Network DNN techniques are
used to solve the problem of manual feature selec-
tion and extraction in conventional automatic systems
for MI Image diagnostics [25]. The Neural Network
backpropagation algorithms are used to train deep
learning [26]. CNN is most applied to analyze visual
images. Myocardial infarction is predicted using the
characteristic images before and after the attack ob-
tained as input image of a CNN [27]. Commonly used
layers in CNN are convolution (Conv), rectified linear
unit (ReLU), pooling, batch normalization, and fully
connected layer [28]. An input matrix is fed into a
detection model that is composed of CNNs and a bidi-
rectional Long short-term memory network (bi-LSTM)

with 5-fold cross-stratified validation [29].
DNN have shown success in several domains, in-

cluding images, audio, and text [30]. In real-world
applications, the most common data type is tabular
data, which comprises sample (rows) with the same set
of features (columns). Tabular data is used in many
fields, including medicine, finance, manufacturing, cli-
mate science, and many others [31].

Traditional machine learning methods, such as
gradient-powered decision trees (GBDT) [32], dom-
inate tabular data modeling and show superior per-
formance to deep learning. Despite their theoretical
advantages [33–35], DNNs pose many challenges when
applied to tabular data, such as lack of locality, sparse-
ness of data (missing values), mixed feature types
(numerical, ordinal, and categorical) and lack of prior
knowledge about the structure of the data set (as op-
posed to text or images). Ensemble-of-trees algorithms,
such as XGBoost, are considered the recommended
choice for real-life tabular data problems [32], [36].

XGBoost has been used to classify Atrial Fibrilla-
tion [37]. One study proposes ECG signals classifier
based on XGBoost and ensemble empirical mode de-
composition (EEMD) that takes advantage of func-
tions based on time, frequency, and morphological
characteristics [38]. Another study proposes to cre-
ate a set of five-dimensional morphological features
regarding QRS complexes and RR intervals, as well
as some wavelet coefficient features, to build the fea-
ture vector for highly efficient heartbeat classifica-
tion [21]. Performance measures are trained to find
features that are correctly classified and those that
are not well classified, then their relationship is used
to find the efficiency of the classifier. We can get a
high ratio even if all the important classes are misclas-
sified. To overcome this, the data must be properly
balanced [39]. SMOTE, “Synthetic Minority Oversam-
pling Technique” can overcome some classification dis-
advantages [40]. This method has been shown to be
better than other mixtures of under-sampling and over-
sampling.

A study conducted in the year 2021 compared
the performance of XGBoost and the DNN using the
Adamax optimizer and binary cross-entropy loss func-
tion with four hidden layers. The results showed that
the XGboost outperformed the DNN by achieving a
learning accuracy of 100%, while its prediction accu-
racy was 95.60% and 93.08%, for the same phases [41].
The overall learning performance of the DNN model
was 89.42% and 81.23%, while the prediction accuracy
was 80.50% and 77.36%, respectively, for the same
variables [41]. The goal of our study was to compare
the algorithms to determine the most cost-effective
solution for real-time arrhythmia detection.

Single-lead ECG monitors are frequently used be-
cause of their highly productive nature, short run time,
and low cost [42]. However, single-lead ECG cannot
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capture all the information due to the great diversity
of CVD features that can cause misdiagnosis [43].

2.3. Artificial Intelligence

The object of the work is to select an algorithm for
the classification of cardiac alterations that can be
executed in real time, while the electrocardiographic
signal is being acquired. Given that the evaluated algo-
rithms are based on the identification and classification
of a single cardiac cycle, the ideal would be to have
an algorithm capable of capturing and classifying the
signals during the period between waves, better known
as the T-P segment or interval, as shown in Figure 1.

To execute the algorithm in real time, the exe-
cution time should be less than the T-P interval or,
in other words, less than 200 ms. We analyzed files,
from the Physionet databases regarding spread and
available for research of electrocardiograms ECG. Phy-
sionet was developed by the Beth Israel Hospital in
Boston (now the Beth Israel Deaconess Medical Cen-
ter) in conjunction with the Massachusetts Institute
of Technology: (MIT-BIH) [44] and the Physikalisch
- Technische Bundesanstalt, the National Metrology
Institute of Germany: (PTB). The MIT-BIH Base has
109444 ECGs and the PTB Base has 14550 ECGs [45].

Figure 1. Two Independent Cardiac Cycles A and B within
their respective detection window with the T-P interval
identified

MIT-BIH is an arrhythmia database, so it has a
classification labeled “N”: 0, “S”: 1, “V”: 2, “F”: 3, “Q”:
4, where 0 is NORMAL and from 1 to 4 are arrhyth-
mias which are classified as Bradyarrhythmia’s and
Tachyarrhythmias; subclassified as Supraventricular
Tachyarrhythmias and Ventricular Tachyarrhythmias.
In the PTB database, the classification is 0 NORMAL
and 1 ABNORMAL, where severe heart disease such as
myocardial infarction (mostly), heart failure and bun-
dle branch block are considered. The csv files available
in Kaggle have 187 columns that represent the ECG
bio-signal and an additional 188 column that classifies
the ECG. This field is available in both databases and
allows the applicability of machine learning.

Three algorithms were considered: CNN convolu-
tional neural network, ANN artificial neural network,

and the reinforced tree eXtreme Gradient Boost o XG-
Boost. For the neural network algorithms, the works
published by Premanand S, available at Analytics Vid-
hya, were taken as reference.

To avoid underfitting and overfitting problems in
machine learning, the SMOTE function was applied
to both databases separately, which creates new ECGs
based on the original data and balances the categories.

A division by 80 is performed, -20-20 to both
databases obtaining: 289878-72470-90587 ECGs and
for PTB 13446-3362-4202 in Training, Test and Vali-
dation ECG data for MIT and PTB respectively. ECG
samples from both databases and in the different cate-
gories of normal and abnormal have been plotted in
Figures 2 and 3.

Figure 2. MIT-BIH classified signals

We have proceeded to train with ANN, CNN and
XGBoost both the MIT Database and the PTB sepa-
rately to make a comparison in terms of training times,
and levels of precision in the prediction: accuracy, preci-
sion, recall, generating the required confusion matrices.

The training results were first validated using the
test and validation data from both MIT and PTB
separately. And then the prediction level is validated
by crossing data between both databases. A CNN
architecture proposes to select an optimal group of in-
dividual layers and the size of the filters. The following
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values were the chosen: 2 dense layers, layer size 128,
number of 2D convolutional layers and MaxPooling
2D [12N] [46].

Figure 3. MIT-BIH classified signals

3. Results and discussion

We proceeded to train with ANN, CNN and XGBoost
both the MIT Database and the PTB separately to
make a comparison in terms of Training times, and
levels of precision in the prediction: Accuracy, Preci-
sion, Recall, are presented in the required confusion
matrices, Figures 4 and 5.

Figure 4. PTB classified results

Figure 5. Resultados de clasificación sobre la MIT-BIH
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Accuracy vs. Loss for each of the algorithms for
the PTB and MIT databases are presented in Figures
6 and 7.

Figure 6. Accuracy vs. Loss for each of the algorithms
using PTB dataset

Figure 7. Accuracy vs. Loss for each of the algorithms
using MIT dataset

FIT Times and Accuracy obtained for each of the
databases is presented in Figure 8.

Figure 8. Fit and Accuracy for PTB and MIT datasets

After evaluating the training results separately pre-
diction algorithms level was cross validated by exchang-
ing data between both databases, as shown in Figure 9.
For validation purposes, the PTB database was catego-
rized as 0 = normal and 1 = abnormal and processed
by the learning models based on XGBoost and ANN.

Figure 9. PTB data Cross Validated on MIT dataset
using ANN and XGBoost

The training phase was completed through trial-
and-error definitions, the hyperparameters were prop-
erly configured according to Table 1 so that they reach
the expected level of accuracy.

ECGs from the PTB database were validated for
prediction to machine learning models based on ECGs
from the MIT-BIH database, obtaining Accuracy lev-
els of 85% and 86% for normal ECGs. Regarding the
validation of abnormalities, XGBoost had an Accuracy
of 11% and ANN 15%. This is because they handle dif-
ferent heart diseases MIT-BIH arrhythmias and PTB
acute myocardial infarctions.

Table 1. Hyper-Parameter

Classifier Hyper-Parameter MIT PTDBType

XGBoost

Max deph 6 6
Learning rate 0,1 0,1
Optimum number - estimators 100 100
Random state 42 42

ANN

Activation function - hidden layers ReLU ReLU
Activation function - output layers Softmax Softmax
Number of epochs 50 epochs 50 epochs
Batch_size 10 10
Optimization method adam adam
Layer hidden 3 3
Learning rate 0,0001 0,0001

CNN

Activation function - hidden layers ReLU ReLU
Activation function - output layers Softmax Softmax
Number of epochs 10 epochs 10 epochs
Batch_size 10 10
Optimization method adam adam
Layer hidden 7 7
Learning rate 0,0001 0,0001

This proves that normal signals can be recognized
cross platform, but abnormal ECG data is not inter-
operable between one database and another.
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Finally, using supervised learning, the 2 artificial
neural network models and the XGBoost algorithm
for prediction by classification, were compared using a
weight matrix, considering criteria such as prediction

accuracy, sensitivity of medical data (false positive/-
false negative), the learning time, the prediction time,
as shown in Table 2.

Table 2. PTB data Cross Validated on MIT dataset using ANN and XGBoost

Criterio ANN Value CNN Valor XgBoost Value Weight ANN CNN XgBoost
Training 46 min 4 3 h, 30 min 2 26 min 5 3 12 6 15time

Resources

Mid 4 High 2 Low 5 3 12 6 15required
for

training
Resources

Mid 5 Mid 5 Mid 5 3 15 15 15required
for

operation
Predictive Hgh 4 Low 2 High 5 3 12 6 15capacuty
Sensitivity 2631 3 504 5 8477 2 5 15 25 10

Mean 0:00:04.14
3

0:01:22.14
2

0:00:02,02
4 5 15 10 20prediction 2830 2794 8421

time
Prediction 97% 3 99 % 5 91 % 2 5 15 25 10accuracy

Total 110 96 93 100
100 87,3 84,5 90,9

As previously defined, the object of the work is
to select an algorithm for the classification of cardiac
alterations that can be executed in real time, while the
electrocardiographic signal is being acquired. Given
that the results from Table 2 a point comparison can
be obtained to determine what is the best algorithm
for a u-health solution (Figure 10).

Figure 10. Point comparison between the three algorithms

For the learning phase of the models, the 123994
electrocardiographic records were used, among the pre-
dictive values obtained, the model that provides the
highest prediction accuracy was determined; Since arti-
ficial intelligence has managed to learn how to properly

classify conditions with cardiac pathologies, the most
suitable and applicable model for the diagnosis of peo-
ple or population groups was selected. In matters of
prevention, the prediction of risk for the general pop-
ulation is of vital importance since it can reduce the
impact of deaths due to cardiac pathologies, as well
as reduce the costs related to these cases.

4. Conclusions

From the discussion, a weight matrix was used to
compare the quality of the 3 prediction algorithms.
Based on such results we conclude that CNN (convolu-
tional neural networks) are much more accurate than
other algorithms (99%), however, training time is high
(in terms of hours), when compared to the XGBoost
training that is obtained within minutes. Since we are
dealing with Human Health, precision and accuracy
in prediction have more weight than speed in training.
As an intermediate we have the artificial neural net-
work ANN that with 97% accuracy is very acceptable.
XGBoost, given the tabular nature of the data, is the
best choice as seen from Figure 10.

Prior conclusion indicates that it is possible to
obtain information about arrhythmia within the RR
interval. Since the goal of the project was to process
data real time, the results are highly encouraging. For
future work we intend to use ECG data from smart
watches that are being generated as part of a doctoral
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research. Arrhythmia detection from smart watches
would be a great tool for early detection of poten-
tial life-threatening events such as fibrillation. False
positives however need to be reduced and since we
could process data in real time, the joint probability
distribution can be used in future work to increase
the predictive nature of the algorithm. All in all, this
is a significant contribution to the field of real-time
arrhythmia detection.
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