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Abstract Resumen
One of the essential parameters in hydraulic systems
of pipe networks is the friction factor λ. The friction
factor is determined using the implicit Colebrook-
White equation through iterative methods, which
makes its application challenging. In this work, a cor-
relation based on the recursive method is developed
to calculate the friction factor using the Colebrook-
White equation. Two empirical relationships are pro-
posed to finalise the correlation, with coefficients and
exponents calibrated in Excel 2019. The results of the
two proposed relationships were compared with the
Swamee-Jain and Haaland relationships for recursive
increments. For the λ8 correlation, the maximum per-
centage error of the friction factor was 0,0000017%,
for a relative roughness of 0,00001 and a Reynolds
number of 4000. Additionally, the calculations yielded
seven exact decimal digits for the friction factor. For
Reynolds numbers greater than 4000, the percentage
error decreases. As a result, it is concluded that the
correlation based on the proposed explicit relation-
ships satisfies the solution of the implicit Colebrook-
White equation.

En los sistemas hidráulicos de redes de tuberías, uno
de los parámetros fundamentales es el factor de fric-
ción λ. El factor de fricción se determina con la
ecuación implícita de Colebrook-White por medios
iterativos, lo cual dificulta su aplicación. En el pre-
sente trabajo se construye una correlación basada
en el método recursivo para el cálculo del factor
de fricción, para lo cual se empleó la ecuación de
Colebrook-White. Para el cierre de la correlación se
proponen dos relaciones empíricas, donde sus coefi-
cientes y exponentes fueron calibrados en Excel 2019.
Se compararon los resultados de las dos relaciones
que se proponen con las relaciones de Swamee-Jain
y Haaland, para incrementos recursivos, donde para
la correlación λ8 se obtuvo el error porcentual má-
ximo del factor de fricción de 0,0000017 %, para la
rugosidad relativa de 0,00001 y número de Reynolds
4000; así como, los decimales arrojaron siete dígitos
decimales exactos para el factor de fricción. Para
Reynolds mayores de 4000, el error porcentual dis-
minuye. Se concluye que la correlación en función de
las relaciones explícitas que se proponen satisface a la
solución de la ecuación implícita de Colebrook-White.
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1. Introduction

In pipe network systems in industrial processes, in-
ternal flow exhibits fluctuations in velocity, pressure,
temperature, and other parameters. The flow is driven
by pressure differentials, and flow friction is always
present.

For a pipeline or measuring instrument, a gradient
of pressure, velocity, and temperature occurs. The flow
velocity is maximum in the central region, while at
the wall, it is zero due to the no-slip condition. There-
fore, a pressure decrease caused by viscous stresses
represents an irreversible pressure loss known as pres-
sure drop [1, 2]. There are abrupt pressure drops in
the throat section in experimental flow measurement
devices, such as the Venturi tube. In contrast, the
pressure drops on the walls of the junctions between
the throat section and the converging and diverging
sections are lower compared to the central region of
the flow [3].

The flow regime is classified into laminar, transi-
tional, and turbulent. Smooth and parallel streamlines
with orderly motion characterize the laminar flow. This
flow is expected in fluids with high viscosity and low-
speed motion. On the other hand, turbulent flow is
characterized by random fluctuations of eddies at dif-
ferent scales.

These eddies transport mass, amount of motion,
and energy to other flow regions, increasing the amount
of motion, mass, and heat transfer in the affected areas.
As a result, turbulent flow is associated with significant
variations in the values of friction coefficients, mass
transfer, and heat transfer [1, 2].

Osborne Reynolds [4] conducted experiments on
pipe sections to study the flow and discovered that
the flow regime is related to the ratio of inertial forces
to viscous forces in the fluid. This ratio is known as
the Reynolds number, Re, and is calculated using the
formula: Re = V d/ν, where V is the average velocity,
d is the internal diameter of the pipe, ν = µ/ρ is the
kinematic viscosity, µ is the dynamic viscosity, and ρ
is the density of the fluid [1, 2].

The transition from laminar flow to turbulent flow
is determined by the viscosity and velocity of the flow,
as well as the pipe geometry, internal wall roughness,
wall temperature, and other factors. In most practical
conditions, flow is classified as follows: laminar flow
for Re ≤ 2300, turbulent flow for Re ≥ 4000, and tran-
sitional flow in the range of 2300 ≤ Re ≤ 4000 [1, 2].

Colebrook and White [5, 6] proposed an implicit
equation to calculate the friction factor λ, in turbu-
lent flow in pipes, based on the results of their ex-
perimental research. This equation is known as the
Colebrook-White equation (1).

1√
λ

= −2log

[
ε

3, 7 + 2, 51
Re

√
λ

]
(1)

The Colebrook-White equation combines data for
transitional and turbulent flow in smooth and rough
pipes. The parameter ε represents the relative rough-
ness and is defined as ε = k/d, where k is the average
height of the material’s roughness and d is the pipe’s
internal diameter. The parameter Re is the Reynolds
number. The parameters λ, ε and Re are dimension-
less.

The friction factor in the Colebrook-White equa-
tion cannot be solved accurately and explicitly using
algebraic procedures. Therefore, the friction factor is
determined using numerical methods through itera-
tive procedures in computational codes, such as the
Newton-Raphson method, bisection, fixed-point iter-
ation, etc. This makes it challenging to obtain the
friction factor in the design of pipeline networks due
to the extensive and laborious calculations required by
these iterative methods.

As an alternative solution to the implicit Colebrook-
White equation, Moody [7] proposed using a graph
that represents this equation. This graph is used in
engineering to determine the friction factor. However,
a numerical error is generated when determining the
friction factor, which implies obtaining an approximate
result.

The literature describes empirical correlations that
provide an approximate solution for calculating the
friction factor. These correlations are based on the
Colebrook-White equation. Among the most well-
known and widely used empirical correlations are the
Swamee-Jain equation (2) [8], with a maximum esti-
mated error of 3.2%, and the Haaland equation (3) [9],
with a maximum estimated error of 2.1%.
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Several authors have proposed various empirical
and explicit relationships to decrease the numerical
error associated with the friction factor in relation to
ε and Re. They have employed different methods to
obtain a more accurate solution to achieve this.

Some authors, such as Mikata and Walczack [10],
Rollmann and Spindler [11] and Biberg [12] apply the
Lambert ω function. Serghides [13], Vatankhah [14],
and Azizi et al. [15] obtain correlations through com-
binations of algebraic procedures. Chen [16], Schorle
et al. [17], Zigrang and Sylvester [18], Sousa et al. [19],
Romeo et al. [20] and Offor and Alabi [21] obtain corre-
lations using the recursive method with modifications
of constants and exponents. Santos et al. [22] and Al-
faro et al. [23] conduct experimental evaluations to
calculate the friction factor.
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In addition to the aforementioned authors, Pérez
et al. [24] present a list of forty-nine (49) explicit rela-
tionships for calculating the friction factor. This list
starts with the Moody equation [7] and ends with the
one proposed by Azizi et al. [15].

It is worth mentioning that some recent studies
have conducted reviews of the errors associated with
the friction factor in correlations reported in the liter-
ature [25]. These studies reveal that the relationship
proposed by Praks and Brkić [26] has a maximum per-
centage error of 0,001204%, the relationship proposed
by Serghides [13] yields an error of 0,00256%, the rela-
tionship proposed by Vantakhak [14] has an error of
0,005952%, and the relationship proposed by Romeo
et al. [20] presents an error of 0,007468%. Lamri and
Easa [27] apply the Lagrange inversion theorem and
obtain an error of 0,002% for four terms.

Based on the results obtained by the mentioned
authors, it can be inferred that the error produced by
each empirical equation is due to the structure of the
equation with the algebraic terms it comprises and the
coefficients and exponents used.

The numerical precision in the number of decimal
digits of the friction factor is related to the percentage
relative error. Therefore, it is essential to calibrate
the coefficients and exponents to create a new em-
pirical correlation that has a simple structure as a
mathematical model.

This work develops an explicit correlation using
the recursive method to calculate the friction factor for
turbulent flow in pipes. Additionally, this correlation
is evaluated for four explicit relationships that calcu-
late the friction factor for the initial approximation.
The methodology is described in Section 2, the results
obtained for the friction factor and percentage errors
are presented in Section 3, and finally, the conclusions
of the analysis are discussed in Section 4.

2. Materials and methods

2.1. Graphical representation of the correlation
curve fit

Figure 1 displays a generic scheme with three curve
trajectories. It illustrates the curve of an implicit ana-
lytic function y = f(x, y). Additionally, it shows the
curve of an explicit empirical function y = h(x), which
is offset from the curve of the analytic function. The
segmented curve corresponds to the correlation, which
is the recursive function yn+1 = f(x, yn). This function
approaches the curve of the analytic function.

At a local reference point (xo, yo) for the empirical
function yo = h(xo), the data xo is within the range
from xa to xb (x-axis), and the output data yo is within
the range from ya to yb ( y-axis). For the analytic func-
tion, when xo, the output data is ym, establishing the
reference point (xo, ym). Similarly, for recursion, when

xo, is the input data, the result is yn+1, defining the ref-
erence position (xo, yn+1). For a fixed point xo, as the
algebraic terms of the recursion yn+1 increase, starting
from yo, the dependent variable yn+1 approaches the
fixed value ym This implies that the numerical error
gradually decreases until achieving numerical conver-
gence ym = yn+1. Therefore, for different input values
xo, the recursion curve would overlap the analytic
curve in the range xa ≤ xo ≤ xb, and the output data
would fall within the range ya ≤ yn+1 ≤ yb.

Figure 1. Basic schematic representation of the curves for
the analytic, empirical, and recursive functions.

In Figure 1 the steps of the recursive method shown
in equation (4).

y1 = f(xo, yo)
y2 = f(xo, y1)
y3 = f(xo, y2)

...
yn+1 = f(xo, yn)

(4)

Where the first approximation is y1, the second
is y2, the third is y3, and the last one yn+1. The suc-
cession for yn+1, increases progressively, starting from
n = 0.

The function yo = h(xo) is an explicit mathemati-
cal expression that provides a representation of a closed
initial calculation, where yo is the first approximate
solution.

2.2. Explicit relationship

To calculate the initial first approximation of the fric-
tion factor λo, it is necessary to establish a mathe-
matical expression as an explicit relationship for this
approximate solution.

To obtain the explicit relationship λo, equation
(1) of Colebrook-White [5, 6] was considered.

√
λ was

removed from the argument of the Colebrook-White
equation, and the positions of the coefficients ai and
exponents ni were adjusted. As a result, the explicit
relationship λo for the initial friction factor calculation
was structured as equation (5).
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The input data consists of the independent pa-
rameters: the relative roughness ε and the Reynolds
number Re. These parameters are set in the range of
1 × 10−06 ≤ ε ≤ 0, 05 and 4000 ≤ Re ≤ 1 × 10+08. The
output data is λo.

The coefficients a1, a2, a3 and the exponents n1 and
n2 of equation (5) were iteratively calibrated in an Ex-
cel 2019 spreadsheet using equation (1) of Colebrook-
White as a reference. The best results regarding the
magnitudes of the coefficients and exponents were se-
lected to establish two explicit relationships.

Table 1 displays the magnitudes of the coefficients
and exponents for the two proposed explicit relation-
ships, presented as equations (6) and (7).

Table 1. Calibrated values of coefficients and exponents

Coefficient Exponent
a1 a2 a3 n1 n2

Eq. (6): 1,795 3,9 6,94 1,104 -
Eq. (7): 2 3,7 6,94 - 0,9
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]
(6)

1√
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= −a1log
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+
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Re
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2.3. Correlation adjustment

Based on the recursive method, equation (1) of
Colebrook-White [5, 6] was adjusted to calculate the
friction factor using λn+1, as the output data and λn as
the input data. The modified equation (8) is expressed
as follows.

1√
λn+1

= a log

[
b + c

1√
λn

]
(8)

Where a = −2, b = ε/3, 7 y c = 2, 51/Re.
Equation (8) is based on the base 10 logarithm.

This equation is used to perform the calculations in
this work. It can also be expressed in terms of the natu-
ral logarithm as follows: 1/

√
λn+1 = a1ln

[
b + c/

√
λn

]
,

where a1 = a/ln(10).
Using equation (8), the correlation expressed as

equation (9) was established to calculate the incre-
ment of the succession λn+1 = λ2, λ4, λ6, λ8.

1√
λ8

= a log [b + ac log [b + cD]]
D = a log [b + ac log [b + cC]]
C = a log [b + ac log [b + cB]]
B = a log [b + ac log [b + cA]]

(9)

Where D = 1√
λ6

, C = 1√
λ4

, B = 1√
λ2

and
A = 1√

λo
.

Equation (9) was extended by adding terms to eval-
uate up to λn+1 = λ20, although the mathematical
expression for λ20 is not presented because the proce-
dure is similar. The same principle as in equation (8)
is applied.

The purpose of evaluating the correlation in a seg-
mented manner was to determine the decrease in the
percentage error of the friction factor for different
values of the Reynolds number and relative roughness.

As input value of λo for A = 1/
√

λo en in equation
(9), four explicit relationships were considered: the
Swamee-Jain relationship [8] (equation (2)), the Haa-
land relationship [9] (equation (3)), and the equations
(6) and (7) proposed in this work. Each relationship
was evaluated separately in equation (9).

The percentage error of the friction factor λ(%)
was calculated using the following the equation (10).

λ(%) = 100
∣∣∣∣λm − λn+1

λm

∣∣∣∣ (10)

Where λm represents the friction factor of the exact
solution of the Colebrook-White equation, and λn+1
represents the friction factor obtained from equation
(9).

It is worth mentioning that all numerical calcu-
lations and graphs were performed in an Excel 2019
spreadsheet.

3. Results and discussion

3.1. Correlation and explicit relationships for
friction factor calculation

The correlation created using the recursive method is
expressed by equation (9), where the parameter values
are a = −2, b = ε/3, 7, and c = 2, 51/Re. This corre-
lation is a mathematical expression that models the
trajectory of the friction factor curve, λ, in relation to
the relative roughness, ε, and the Reynolds number,
Re. Considering the term A = 1/

√
λo, in which the

explicit relationships of 1/
√

λo are substituted, acting
as the correlation’s finalizing factor.

The two explicit relationships proposed in this work
to close equation (9) are equations (6) and (7), and
they are expressed as follows.

It is worth mentioning that equation (9) has a sim-
ple structure for direct calculations, which improves
the precision in reducing the error of the friction factor
with each additional term in the recursion. Therefore,
the exact decimal digits of the friction factor increase.

Below, we present the percentage errors of the fric-
tion factor yielded by equation (9) for the explicit
relationships that serve as a closure for A = 1/

√
λo,
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equation (2) by Swamee-Jain, equation (3) by Haaland,
and the proposed equations (6) and (7).

3.2. Percentage errors of the friction factor

Figure 2 shows the plots of the curve trajectories of the
percentage errors of the friction factor λo, calculated
by the initial first approximation for equations (2), (3),
(6) and (7). These curve trajectories are essential to
understand the effect of the coefficients and exponents
on variable values of the relative roughness, ε, and the
Reynolds number, Re.

For the Reynolds number range of 4000 ≤ Re ≤
1×1008 and the relative roughness range of 1×10−06 ≤
ε ≤ 0, 05, equation (6) exhibits an estimated maximum
percentage error of 2.1%, while equation (7) has an er-
ror of 3.1%. Swamee-Jain’s equation (2) shows an esti-
mated maximum error of 3.2%, and Haaland’s equation
(3) has an error of 2.1%. In certain areas, equations (2),
(3), (6), and (7) exhibit errors of around 0.1% (Figure
2). It is worth mentioning that the figures only depict
curve trajectories for the relative roughness range of
0, 00001 ≤ ε ≤ 0, 05.

For ε = 0, 05 (Figure 2a), equations (3) and (6)
exhibit trajectories with a horizontal trend starting
from the local position Re = 1 × 1005. The curve of
equation (7) overlaps with the curve of equation (2)
and shows a straight-line trend with a negative slope.
For ε = 0, 00001 (Figure 2d), the fluctuations in the
friction factor curves are greater compared to the other
curves illustrated in Figure 2.

For hydraulically rough pipes (ε = 0, 05), the trends
differ much more from each other than in hydraulically
smooth pipes (ε = 0, 00001), especially in the case of
equations (2) and (7) for the curve in Figure 2a.

The curves show that the coefficients and expo-
nents of each relationship have a dominant effect that
defines their own trajectory behavior.

It is worth mentioning that, in Figure 2 and other
figures shown below, there are inflection points in
the curves during the descending peaks for specific
Reynolds numbers, which are not visible because the
error output data (y-axis) are absolute values accord-
ing to equation (10). Additionally, it is essential to note
that the vertical axis is on a logarithmic scale base 10
to facilitate the analysis of the curve trajectories.

Figure 2. Percentage errors of the friction factor for λo,
as the calculation of the first approximation of Equations
(2), (3), (6) and (7)

Figures 3, 4, 5 and 6 show the trajectories of the
curves for the percentage errors of the friction factor
for λ2, λ4, λ6 and λ8. As the terms increase, equations
(2), (3), (6) and (7) define their own curve trajectories.
The curve trajectories exhibit the highest percentage
relative error of the friction factor for each value of ε,
at the position Re = 4000, for λ2, λ4, λ6 and λ8

The regions with the highest errors of the friction
factor are found at the local positions ε = 0, 00001 and
Re = 4000, as illustrated in Figures 3d, 4d, 5d and 6d.

The equations (2), (3), (6) and (7) for λ8 (Figure
6d) have errors less than 0,000002%. For λ6 (Figure
5d), the maximum errors are 0,00006%. Forλ4 (Figure
4d), the errors are 0,002%, and for λ2 (Figure 3d), the
errors are 0,061%.

The magnitudes of the coefficients and exponents
in each explicit relationship exhibit a specific behavior,
which influences the evolution of the curve trajectories
as the relative roughness increases within the same
range of Reynolds numbers, as illustrated in Figures 2
to 6. For future work, it is recommended to perform
comparisons with other explicit relationships by sub-
stituting them into equation (9) to determine which
one yields the lowest percentage errors.

It is worth mentioning that something similar to
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what is observed in Figure 2a also occurs in Figure
3a. For λ2 and ε = 0, 05, equations (2) and (7) show
a more significant difference in hydraulically rough
pipes, with a trend of straight lines with a negative
slope. Similarly, equations (3) and (6) also exhibit
straight trajectories and intersect in the region around
Re = 1 × 1005. This phenomenon is also observed in
Figures 4a, 5a, and 6a, where the trajectories show
a trend of straight lines for rough pipes (ε = 0, 05),
respectively.

Table 2 displays the maximum errors of the friction
factor for ε = 0, 00001 and the local Reynolds numbers
4 × 1003, 1 × 1004, 1 × 1005, 1 × 1006, 1 × 1007 and
1 × 1008. These values correspond to λo, λ2, λ4, λ6
and λ8, which are related to Figures 2, 3, 4, 5 and
6. For equation (6) for λ8, considering the conditions
ε = 0, 00001 and Re = 4×1003, a maximum percentage
error of the friction factor of 1, 7 × 10−06% is obtained.
For equations (2), (3) and (7), the errors are below
1, 7 × 10−06 %.

It is worth mentioning that as the recursion in-
creases, the percentage errors decrease. Consequently,
the friction factors for λ8 exhibit seven exact decimal
digits for ε = 0, 001, eight exact decimal digits for
ε = 0, 00001 and nine exact decimal digits for ε = 0, 05
and ε = 0, 0001, compared to the friction factor of
Colebrook-White equation (1), as shown in Table 3.
For recursion values lower than λ8, the exact decimal
digits decrease. For λ6 there are six exact decimal dig-
its, for λ4 there are five exact decimal digits, and for
λ2 there are four exact decimal digits.

In equation (9) for λ8, the maximum percentage
error of the friction factor was obtained, with a value
of 0.0000017%, which is significantly lower than other
reported percentage errors. Brkić and Stajić [25], ob-
tained errors around 0.001204%, Praks and Brkić [26]
obtained an error of 0.002560%, and Serghides [13]
obtained an error of 0.002560%. It is worth mention-
ing that the percentage errors reported by Brkić and
Stajić [25] have not been verified by the authors of
this study through numerical calculations. Therefore,
they are presented solely for comparative purposes.

Figure 3. Percentage errors of the friction factor for λ2

Figure 4. Percentage errors of the friction factor for λ4
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Figure 5. Percentage errors of the friction factor for λ6

Figure 6. Percentage errors of the friction factor for λ8

Table 2. Percentage errors, λ (%), of the friction factor
for the recursions, for ε = 0, 00001 and local Re

Error Eq (2) Eq (3) Eq (6) Eq (7)
λ (%) Re = 4E + 03

λ0 1,6182 1,2790 2,0294 1,4803
λ2 0,0482 0,0381 0,0610 0,0441
λ4 0,0014 0,0011 0,0018 0,0013
λ6 4,4E-05 3,5E-05 5,0E-05 4,0E-05
λ8 1,4E-06 1,1E-06 1,7E-06 1,2E-06

λ (%) Re = 1E + 04
λ0 0,2958 0,0132 0,7047 0,1769
λ2 0,0068 0,0003 0,0163 0,0041
λ4 1,6E-04 7,2E-06 3,8E-04 9,6E-05
λ6 3,7E-06 1,7E-07 8,8E-06 2,3E-06
λ8 8,6E-08 3,9E-09 2,1E-07 5,2E-08

λ (%) Re = 1E + 05
λ0 0,6637 1,0164 0,3413 0,7522
λ2 0,0088 0,0135 0,0045 0,0099
λ4 1,2E-04 1,8E-04 6,0E-05 1,4E-04
λ6 1,6E-06 2,4E-06 7,9E-07 1,8E-06
λ8 2,1E-08 3,2E-08 1,1E-08 2,3E-08

λ (%) Re = 1E + 06
λ0 0,1380 0,8650 0,1948 0,2036
λ2 0,0010 0,0062 0,0013 0,0014
λ4 7,1E-06 4,5E-05 1,0E-05 1,1E-05
λ6 5,1E-08 3,2E-07 7,2E-08 7,6E-08
λ8 3,7E-10 2,3E-09 5,2E-10 5,4E-10

λ (%) Re = 1E + 07
λ0 0,6984 0,4194 0,3166 0,6651
λ2 0,0011 7,0E-04 5,3E-04 0,0011
λ4 2,0E-06 1,2E-06 8,8E-07 1,80E-06
λ6 3,2E-09 1,9E-09 1,5E-09 3,1E-09
λ8 5,3E-12 3,3E-12 2,4E-12 5,1E-12

λ (%) Re = 1E + 08
λ0 0,4423 0,0732 0,8823 0,4351
λ2 2,4E-05 3,9E-06 4,7E-05 2,3E-05
λ4 1,3E-09 2,1E-10 2,5E-09 1,3E-09
λ6 6,4E-14 0 1,3E-13 6,4E-14
λ8 0 0 0 0

Figure 7 displays the decrease in the percentage
error of the friction factor as recursion increases for
λ2, λ4, λ6, λ8, up to λ20.

For equations (2), (3) (6) and (7), with, ε = 0, 00001
and a local position of Re = 4E + 03, the following
percentage errors are obtained: λ9, 2, 85E − 07%, λ10,
4, 95E − 08 %, λ11, 8, 55E − 09 %; λ12, 1, 5E − 09 %,
λ14, 4, 5E − 11 %, λ16, 1, 5E − 12%, λ18, 5, 5E − 14%,
and λ20 0,0%.

For other values of relative roughness and Reynolds
numbers, the percentage errors of the friction factor
are lower. This indicates that as the Reynolds number
increases, fewer terms in the recursion are required to
achieve numerical convergence.
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Table 3. Comparison of numerical values of friction fac-
tors for the recursions considering the Colebrook-White
equation Re = 4E + 03 and local ε

Eq (2) Eq (3) Eq (6) Eq (7)
λ Eq (1): λ = 0, 076986834; ε = 0, 05
λ0 0,0793827 0,0776348 0,0772007 0,0793531
λ2 0,0769896 0,0769876 0,0769870 0,0769895
λ4 0,0769868 0,0769868 0,0769868 0,0769868
λ6 0,0769868 0,0769868 0,0769868 0,0769868
λ8 0,0769868 0,0769868 0,0769868 0,0769868

λ Ec. (1): λ = 0, 040910389; ε = 0, 001
λ0 0,0416954 0,0412161 0,0415108 0,0416423
λ2 0,0409306 0,0409183 0,0409259 0,0409293
λ4 0,0409109 0,0409105 0,0409107 0,0409108
λ6 0,0409104 0,0409103 0,0409104 0,0409104
λ8 0,0409103 0,0409103 0,0409103 0,0409103

λ Ec. (1): λ = 0, 040008431; ε = 0, 0001
λ0 0,0406678 0,0404853 0,0407853 0,0406129
λ2 0,0400278 0,0400224 0,0400312 0,0400262
λ4 0,0400090 0,0400088 0,0400091 0,0400089
λ6 0,0400084 0,0400084 0,0400084 0,0400084
λ8 0,0400084 0,0400084 0,0400084 0,0400084

λ Ec. (1): λ = 0, 039917166; ε = 0, 00001
λ0 0,0405631 0,0404277 0,0407272 0,0405080
λ2 0,0399364 0,0399324 0,0399412 0,0399347
λ4 0,0399177 0,0399176 0,0399178 0,0399176
λ6 0,0399171 0,0399171 0,0399171 0,0399171
λ8 0,0399171 0,0399171 0,0399171 0,0399171

Equation (9) is applicable for hydraulic pipes with
values lower than ε = 0, 00001, and even for ε = 0.
When ε = 0, equation (9) simplifies, and numerically,
the error curves of the friction factor resemble the
trajectories shown in Figure 7c. The results from the
graphs and tables are not presented due to their sim-
ilarity. For λ8, and the range 4000 ≤ Re ≤ 1E + 08,
the percentage error is lower than 1,5E-06%.

The Swamee-Jain and Haaland equations were eval-
uated in equation (9), starting from λ2, and yielded
similar results to the evaluations of the proposed equa-
tions (6) and (7).

Any equation that has structures different from
equations (6) and (7) and that is used in equation (9)
can reduce the percentage error of the friction factor.

The advantage of equation (9) lies in its simple
structure and ease of use for directly calculating the
friction factor as an approximate solution.

Figure 7. Percentage errors of the friction factor for equa-
tions (2), (3), (6) and (7)

4. Conclusions

The correlation expressed in equation (9) for λ8, and
the explicit relationships represented by equations (6)
and (7) for calculating λo as an initial approxima-
tion provide an approximate solution for the implicit
Colebrook-White equation (1). Equation (9) is appli-
cable for turbulent flows within the Reynolds number
range of 4000 ≤ Re ≤ 1E + 08 and the relative rough-
ness range of 0, 05 ≥ ε ≥ 0, 00001. It can also be
applied to smooth pipes within the same Reynolds
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number range. However, equation (9) is not applicable
for Re < 4000.

Within the relative roughness range of,
0, 05 ≥ ε ≥ 0, 00001, and Reynolds number range of
4 × 1003 ≤ Re ≤ 1 × 1008, the estimated value of the
maximum percentage error of the friction factor is
1, 7 × 10−06 %, for ε = 0, 00001 and Re = 4 × 1003.
In this case, the friction factor has seven exact deci-
mal digits. For other values of relative roughness and
Reynolds numbers, the numerical magnitudes of the
friction factor exhibit more than seven exact decimal
digits.

For recursions beyond λ8, the exact decimal digits
increase. For ε = 0, 00001 and Re = 4 × 1003, λ10
exhibits an error of 4, 95×10−08 %, λ14 yields an error
of 4, 5 × 10−11 %, and λ20 exhibits an error of 0,0%.

References

[1] F. M. White, Fluid Mechanics. McGraw Hill,
2011. [Online]. Available: https://bit.ly/3ICSyXO

[2] Y. A. Cengel and J. M. Cimbala, Fluid Mechan-
ics: Fundamentals and Applications. McGraw-
HillHigher Education, 2011. [Online]. Available:
https://bit.ly/43sCUX3

[3] S. L. B. Tolentino Masgo, “Estudio experimental
y numérico de la presión del flujo de agua en un
tubo Venturi,” Ingenius, Revista de Ciencia y Tec-
nología, no. 23, pp. 9–22, 2020. [Online]. Available:
https://doi.org/10.17163/ings.n23.2020.01

[4] O. Reynolds, “An experimental investigation of
the circumstances which determine whether the
motion of water shall be direct or sinuous, and
of the law of resistance in parallel channels,”
Philosophical Transactions of the Royal Society
of London, vol. 174, pp. 935–982, 1883. [Online].
Available: https://doi.org/10.1098/rstl.1883.0029

[5] C. F. Colebrook, C. M. White, and G. I. Taylor,
“Experiments with fluid friction in roughened
pipes,” Proceedings of the Royal Society of London.
Series A - Mathematical and Physical Sciences,
vol. 161, no. 906, pp. 367–381, 1937. [Online].
Available: https://doi.org/10.1098/rspa.1937.0150

[6] C. F. Colebrook, “Turbulent flow in pipes, with
particular reference to the transition region be-
tween the smooth and rough pipe laws,” Journal
of the Institution of Civil Engineers, vol. 11,
no. 4, pp. 133–156, 1939. [Online]. Available:
https://doi.org/10.1680/ijoti.1939.13150

[7] L. F. Moody and N. J. Princeton, “Friction
factor for pipe flow,” Transaction of ASME,
vol. 66, pp. 671–684, 1944. [Online]. Available:
https://bit.ly/3BRgxyL

[8] P. K. Swamee and A. K. Jain, “Explicit
equations for pipe-flow problems,” Jour-
nal of the Hydraulics Division, vol. 102,
no. 5, pp. 657–664, 1976. [Online]. Available:
https://doi.org/10.1061/JYCEAJ.0004542

[9] S. E. Haaland, “Simple and explicit formu-
las for the friction factor in turbulent pipe
flow,” Journal of Fluids Engineering, vol. 105,
no. 1, pp. 89–90, Mar 1983. [Online]. Available:
https://doi.org/10.1115/1.3240948

[10] Y. Mikata and W. S. Walczak, “Exact analytical
solutions of the Colebrook–White equation,”
Journal of Hydraulic Engineering, vol. 142, no. 2,
p. 04015050, 2016. [Online]. Available: https://
doi.org/10.1061/(ASCE)HY.1943-7900.0001074

[11] P. Rollmann and K. Spindler, “Explicit rep-
resentation of the implicit Colebrook–White
equation,” Case Studies in Thermal Engineering,
vol. 5, pp. 41–47, 2015. [Online]. Available:
https://doi.org/10.1016/j.csite.2014.12.001

[12] D. Biberg, “Fast and accurate approximations for
the Colebrook equation,” Journal of Fluids Engi-
neering, vol. 139, no. 3, Dec 2016, 031401. [Online].
Available: https://doi.org/10.1115/1.4034950

[13] T. K. Seguides, “Estimate friction factor
accurately,” Chemical Engineering Journal,
vol. 91, pp. 63–64, 1984. [Online]. Available:
https://bit.ly/3oqUTyd

[14] A. R. Vatankhah, “Approximate analytical so-
lutions for the Colebrook equation,” Journal
of Hydraulic Engineering, vol. 144, no. 5, p.
06018007, 2018. [Online]. Available: https://doi.
org/10.1061/(ASCE)HY.1943-7900.0001454

[15] N. Azizi, R. Homayoon, and M. R. Hojjati,
“Predicting the Colebrook–White friction factor
in the pipe flow by new explicit correla-
tions,” Journal of Fluids Engineering, vol. 141,
no. 5, Nov 2018, 051201. [Online]. Available:
https://doi.org/10.1115/1.4041232

[16] N. H. Chen, “An explicit equation for
friction factor in pipe,” Industrial & En-
gineering Chemistry Fundamentals, vol. 18,
no. 3, pp. 296–297, 1979. [Online]. Available:
https://doi.org/10.1021/i160071a019

[17] B. J. Schorle, S. W. Churchill, and M. Shacham,
“Comments on: "An explicit equation for
friction factor in pipe",” Industrial & En-
gineering Chemistry Fundamentals, vol. 19,
no. 2, pp. 228–228, 1980. [Online]. Available:
https://doi.org/10.1021/i160074a019

https://bit.ly/3ICSyXO
https://bit.ly/43sCUX3
https://doi.org/10.17163/ings.n23.2020.01
https://doi.org/10.1098/rstl.1883.0029
https://doi.org/10.1098/rspa.1937.0150
https://doi.org/10.1680/ijoti.1939.13150
https://bit.ly/3BRgxyL
https://doi.org/10.1061/JYCEAJ.0004542
https://doi.org/10.1115/1.3240948
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001074
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001074
https://doi.org/10.1016/j.csite.2014.12.001
https://doi.org/10.1115/1.4034950
https://bit.ly/3oqUTyd
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001454
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001454
https://doi.org/10.1115/1.4041232
https://doi.org/10.1021/i160071a019
https://doi.org/10.1021/i160074a019


Tolentino and González / Correlation for the calculation of turbulent friction in pipes 63

[18] D. J. Zigrang and N. D. Sylvester, “A review
of explicit friction factor equations,” Jour-
nal of Energy Resources Technology, vol. 107,
no. 2, pp. 280–283, 1985. [Online]. Available:
https://doi.org/10.1115/1.3231190

[19] J. Sousa, M. d. C. Cunha, and A. S. Marques,
“An explicit solution of the Colebrook–White equa-
tion through simulated annealing,” Water Indus-
try Systems: Modelling and Optimization Appli-
cations, vol. 2, pp. 347–355, 1999.

[20] E. Romeo, C. Royo, and A. Monzon, “Im-
proved explicit equations for estimation of the
friction factor in rough and smooth pipes,”
Chemical Engineering Journal, vol. 86, pp.
369–374, 04 2002. [Online]. Available: http:
//dx.doi.org/10.1016/S1385-8947(01)00254-6

[21] U. Offor and S. Alabi, “An accurate and compu-
tationally efficient explicit friction factor model,”
Advances in Chemical Engineering and Science,
no. 6, pp. 237–245, 2016. [Online]. Available:
http://dx.doi.org/10.4236/aces.2016.63024

[22] I. Santos-Ruiz, J. R. Bermúdez, F. R. López-
Estrada, V. Puig, and L. Torres, “Estimación
experimental de la rugosidad y del factor de
fricción en una tubería,” in Memorias del
Congreso Nacional de Control Automático, San
Luis Potosí, México,, 2018, pp. 489–494. [Online].
Available: https://bit.ly/3oubv8g

[23] A. P. Olivares-Gallardo, R. A. Guerra-Rojas,
and M. A. Alfaro-Guerra, “Evaluación ex-

perimental de la solución analítica exacta
de la ecuación de Colebrook–White,” In-
geniería Investigación y Tecnología, vol. 2,
pp. 1–11, 2019. [Online]. Available: https:
//doi.org/10.22201/fi.25940732e.2019.20n2.021

[24] J. R. Pérez Pupo, J. N. Guerrero, and
M. Batista Zaldívar, “On the explicit expressions
for the determination of the friction factor in
turbulent regime,” Revista mexicana de ingeniería
química, vol. 19, pp. 313–334, 01 2020. [Online].
Available: https://bit.ly/3BUtqrD

[25] D. Brkić and Z. Stajić, “Excel VBA-based
user defined functions for highly precise Cole-
brook’s pipe flow friction approximations: a
comparative overview,” FACTA UNIVERSI-
TATIS Series: Mechanical Engineering, vol. 19,
no. 2, pp. 253–269, 2021. [Online]. Available:
https://doi.org/10.22190/FUME210111044B

[26] P. Praks and D. Brkić, “Advanced iterative
procedures for solving the implicit Colebrook
equation for fluid flow friction,” Advances in
Civil Engineering, 2018. [Online]. Available:
https://doi.org/10.1155/2018/5451034

[27] A. A. Lamri and S. M. Easa, “Computationally
efficient and accurate solution for Colebrook equa-
tion based on Lagrange theorem,” Journal of Flu-
ids Engineering, vol. 144, p. 014504, 2022. [Online].
Available: https://doi.org/10.1115/1.4051731

https://doi.org/10.1115/1.3231190
http://dx.doi.org/10.1016/S1385-8947(01)00254-6
http://dx.doi.org/10.1016/S1385-8947(01)00254-6
http://dx.doi.org/10.4236/aces.2016.63024
https://bit.ly/3oubv8g
https://doi.org/10.22201/fi.25940732e.2019.20n2.021
https://doi.org/10.22201/fi.25940732e.2019.20n2.021
https://bit.ly/3BUtqrD
https://doi.org/10.22190/FUME210111044B
https://doi.org/10.1155/2018/5451034
https://doi.org/10.1115/1.4051731

	Introduction
	Materials and methods
	Graphical representation of the correlation curve fit 
	Explicit relationship
	Correlation adjustment

	Results and discussion
	Correlation and explicit relationships for friction factor calculation
	Percentage errors of the friction factor

	Conclusions

