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Abstract Resumen
The integration of artificial intelligence techniques
introduces fresh perspectives in the implementation
of these methods. This paper presents the combina-
tion of neural networks and evolutionary strategies to
create what is known as evolutionary artificial neural
networks (EANNs). In the process, the excitation
function of neurons was modified to allow asexual
reproduction. As a result, neurons evolved and de-
veloped significantly. The technique of a batch poly-
merization reactor temperature controller to produce
polymethylmethacrylate (PMMA) by free radicals
was compared with two different controls, such as PID
and GMC, demonstrating that artificial intelligence-
based controllers can be applied. These controllers
provide better results than conventional controllers
without creating transfer functions to the control
process represented.

La integración de técnicas de inteligencia artificial
introduce nuevas perspectivas en la aplicación de es-
tos métodos. Este trabajo presenta la combinación de
redes neuronales y estrategias evolutivas para crear
lo que se conoce como redes neuronales artificiales
evolutivas (RNAE). Durante el proceso, se modificó
la función de excitación de las neuronas para per-
mitir su reproducción asexual. Como resultado, las
neuronas evolucionaron y se desarrollaron significati-
vamente. La técnica del controlador de temperatura
de un reactor de polimerización por lotes para pro-
ducir polimetilmetacrilato (PMMA) mediante radi-
cales libres se comparó con dos controles diferentes
(PID y GMC), demostrando así la aplicabilidad de
los controladores basados en inteligencia artificial. Es-
tos controladores ofrecen mejores resultados que los
controladores convencionales sin crear funciones de
transferencia al proceso de control representado.

Keywords: ANNs, Evolved Neural Networks, Reac-
tor Batch, Function Excitation, PMMA

Palabras clave: RNA, redes neuronales evolu-
cionadas, lote de reactores, excitación de funciones,
PMMA

79

https://doi.org/10.17163/ings.n30.2023.07
https://orcid.org/0000-0001-6896-5798
https://orcid.org/0009-0006-7185-5518
https://orcid.org/0000-0003-0393-811X
https://orcid.org/0009-0002-6435-6551
franciscojavier.sanchez@upaep.mx
https://doi.org/10.17163/ings.n30.2023.07


80 INGENIUS N.◦ 30, july-december of 2023

1. Introduction

Artificial neural networks are systems based on the
cognitive and problem-solving capacity of the human
brain, with the difference of greater robustness of the
artificial neural network compared to the human brain.
Who can establish that the systems based on artificial
intelligence and artificial neural networks (ANNs) can
submit an overlearning of the dynamics of the process,
this being a feature of adjustment similar to the human
brain [1–4].

Neural networks can be of different types, and the
selection of the same depends on the characteristics re-
quired of the network and of the process, which means
that the more robust network tends to be the most ap-
propriate setting. However, as happens in the human
brain [5–9], artificial neural networks can also present a
learning non-adjustable, which is called (overlearning);
this means that the neural network used as part of its
adjustment calculated values not representative of the
system, this being that the important part of research
on artificial neural networks. The search for a neural
network that avoids the presence of overlearning, this
feature will cause that emit different types of neural
networks artificial; these new types of neural networks
combine other artificial intelligence techniques, such as
fuzzy logic, evolutionary algorithms, and optimization
techniques (stochastic methods) for improvement of
the response of the neural network [10–14].

Who can use a neural network for the recognition
of patterns and images, or as a controller, in this work
is used an artificial neural network is combined with
a technique of evolution, resulting in an evolutionary
artificial neural network, known as neuroevolutionary
control [15].

This study compares the functions of excitation ap-
plied to neuroevolutionary controllers and conventional
controls such as PID and GMC and shows that systems
based on artificial intelligence and neural networks evo-
lutionary systems provide a better fit compared with
traditional control systems the PID and not conven-
tional GMC systems. This study raises a new aspect
of applying intelligent systems in process control with
unpredictable dynamics [16–18].

2. Materials and Methods

The characteristics of an evolutionary neural network
controller are based on an artificial neural network,
which consists of a function of neuronal representation
that is based on the weights (values xi) of entry and
a function of excitation σ; the latter has the feature
to propagate the pesos toward maximum and mini-
mum [19–22].

Where w0 represents the value of the initial weight,
what can replace the role of excitation (σ) to minimize

the error, avoiding in this way the overlearning, Fig-
ure 1 shows the main structure of an artificial neural
network schematically. Equation (1)

y = σ

(
w0 +

n∑
i=1

wixi

)
(1)

Figure 1. Basic structure of Artificial Neural Networks
(ANNs)

As the neural network controller does not require
to linearize the model according to a mathematical law
of control given, this is mainly because the artificial
neural network first linearized the evolutionary model
in such a way that adequately represents the dynamics
of the process, in Figure 2 shows how the use of a
neural network controller [23].

Figure 2. As Neural Network Controller

The response of the control based on evolutionary
neural networks makes use of evolutionary algorithms,
an algorithm that establishes the foundation of the
evolution of the neural network and modifies the basic
neural network.

When using the three methods of evolution in a
neural network must be clear that the neural network
works dynamically; for this case are only used. The
first two techniques of evolution, this mainly due to
the use of a neural network static; the neural network
does not modify your static weights neural and inter-
connections, but if you evolve, generating new neurons
information storage [24].

Implementing the techniques in an evolutionary
neural network is done by implementing an evolution
algorithm with a series of established steps. Figure 3
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shows each of the sequential stages to obtain a struc-
ture of an evolutionary artificial neural network; the
first stage of the structuring depends on getting synap-
tic weights, which can be obtained through a super-
vised or unsupervised process. for non-linear models
such as fermentation reactors, gets values through an
unsupervised algorithm, which is based on the varia-
bles of the mathematical model (T, P, yeast growth,
concentration, Etc.), that is, those that are obtained
from the solution. From the mathematical model, the
weights are used in the neural network training pro-
cess, which is combined with the evolution algorithm.
The cycle is repeated until the most suitable structure
is found (phenotype of the evolved neural network),
which implies that there is still the possibility of evo-
lution of the system; that is, if the control variables
present disturbances, there will be adjusting according
to the evolutionary process of the same structure of
the evolutionary artificial neural network, this is done
by the evolution method which is a thread where an
analysis of the values of the trained weights is carried
out, this is to generate a new generation of evolved
neurons that adjust to the dynamics of the system [25]

Set up a system of control through evolutionary
neural networks start arises as an architecture of a

primary neural network, which consists of a neuron of
entry, a neuron in the hidden layer, and one neuron
in the output layer; this architecture is set in such a
way due to the prior knowledge of the variable will be
only to check the temperature of reactor polymeriza-
tion [26].

Once established, the basic architecture is set as a
progenitor for each neuron: Equation (2).

PA = (▽ · σiwi + yt) − Ei (2)

Where σi is the function of excitation, wi are synap-
tic weights (input), yt is temporal series of synaptic
weights propagated, and ei is the error of training.

The expansions of weight and the excitation func-
tion are shown in the following equations, which show
who can expand the weights in three dimensions, this
is when the neural network can propagate information
in three dimensions very similar to what happens in
the human brain [14]. Equation (3) and (4)

The progenitor is as follows: Equation (5).

▽ · σiwi = ∂(σiwi)
∂x

+ ∂(σiwi)
∂y

+ ∂(σiwi)
∂z

(3)

Figure 3. Flow diagram of the main structure of the EANN

▽ · σiwi = σi

(
n∑

i=1

∂wi

∂x
+

n∑
i=1

∂wi

∂y
+

n∑
i=1

∂wi

∂y

)
+ wi

(
n∑

i=1

∂σi

∂x

n∑
i=1

∂σi

∂y
+

n∑
i=1

∂σi

∂y

)
(4)

PA =
[(

σi

(∑n
i=1

∂wi

∂x +
∑n

i=1
∂wi

∂y +
∑n

i=1
∂wi

∂y

)
+ wi

(∑n
i=1

∂σi

∂x

∑n
i=1

∂σi

∂y +
∑n

i=1
∂σi

∂y

))]
+

+ytPA =
[(

σi

(∑n
i=1

∂wi

∂x +
∑n

i=1
∂wi

∂y +
∑n

i=1
∂wi

∂y

)
+ wi

(∑n
i=1

∂σi

∂x +
∑n

i=1
∂σi

∂y +
∑n

i=1
∂σi

∂y

))
+ yt

]
− Ei

(5)
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Who used the system to study three different ex-
citation functions tangential function, equation (6),
logarithmic, equation (7), and radial basis, equation
(8).

σi = exp(−ϕ · wi) + ϕexp(ϕ · wi)
exp(−ϕ · wi) − exp(ϕ · wi)

(6)

σi = 1
1 + exp(−ϕ · wi)

(7)

σi =
n∑

i=1
wiϕ(∥w − wci∥) (8)

Where
∑n

i=1 wi represents the slope of the function
of excitation and wi weights of entry of the neural net-
work, generally, these weights of entry to the artificial
neural network can be obtained from a reference model
or through the experimental data from the system to
check.

The evolution of the neural network is performed us-
ing the equation of reproduction of progenitor; this evo-
lutionary through the states and technique to evolved,
equation (9).

PAn+i = PAS,i
+ ηi ▽ ×

(
PAT,i

− PAS,i

)
(9)

Where S and T represent each of the selected pro-
genitors and ηi represents a uniform random number
between zero and the unit [15].

The Levenberg performs the training of the neu-
ral network - Marquart (LM), an accelerated type of
training that can simultaneously function as a gradient
descent training as the Quasi-Newton (BFGS). The
training of LM implements the Newton, based expan-
sion second-order Taylor series method, thus obtaining
a Hessian matrix of the weights of the network; after
obtaining the Hessian matrix approximates a Jacobian
matrix that involves different steps of training [26]
Now who can express the LM method with the scaling
factor µk, equation (10).

Wk+1 = Wk −
[
JT (Wk) · J(Wk) + µk · I

]−1 ·
·JT (Wk) · e(wk) (10)

Where J (wk) is a Jacobian matrix, I is the identity
matrix, and e(wk) is the error weight synaptic.

The neural network model is applied to the evolu-
tionary model of a polymerization reactor using free
radicals of methyl-methacrylate (MMA) for obtaining
poly-methyl-methacrylate (PMMA). The mathemati-
cal model consists of mass balances, energy, and kinetic
equations, this model is a direct way to implement con-
trol with neural networks, and the same applies to the
rules necessary to obtain the control laws for drivers
of type GMC and PID [27] .

Mass Balance: equation (11) and (12).

dCm

dt
= − (Kp0 + kfm) Cmξ0 (11)

dCi

dt
= −kdCi (12)

Energy Balance: equation (13) and (14).

dT

dt
= (−∆Hr)Rp

Cp ρmix
− UA(T − TJ)

CpV ρmix
(13)

dTJ

dt
= (TJSP −TJ

)
τJ

+ UA(T − TJ)
CpJVJρJ

(14)

Kinetic Equations: ((15) to (25)).

kd = 1.58 × 1015exp

(
−1.2874 × 105

RT

)
(15)

kP 0 = 7.0 × 106exp

(
−2.6334 × 104

RT

)
(16)

kfm = 4.661 × 109exp

(
−7.4479 × 104

RT

)
(17)

kfs = 1.49 × 109exp

(
−6.6197 × 104

RT

)
(18)

kθp = 3.0233 × 1013exp

(
−1.1700 × 105

RT

)
(19)

kθt = 1.4540 × 1020ci,0 exp

(
−1.4584 × 105

RT

)
(20)

kp = kp0(
1 + kp0

Dkθp

) (21)

kt = kt0(
1 + kt0

Dkθt

) (22)

D = exp

[
2.303(1 − ϕp)

0.168 − 8.21 × 10−6(T − 387)2 + 0.03(T − ϕp)

]
(23)

ϕp = µ1MWm

ρp
(24)

kfm = Zfm exp

(
−Efm

RT

)
(25)

The implementation of a control system based on
artificial intelligence (AI), such as evolutionary artifi-
cial neural networks, unlike other conventional control
systems, only require training and knowledge of the
behaviour of the process variables to be controlled,
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in the case of a fermentation reactor, the following
must be considered: temperature, growth kinetics of
microorganisms, and concentration of the final fermen-
tation product, for this very reason it breaks with the
conventional tuning paradigms of a traditional system
of control, although it must be taken into consideration
that overlearning does not occur recurrently, which can
be minimized by the self-adjusting training algorithm
to the dynamics of the fermentative process itself.

The following equations give the control laws for
the two types of controllers, such as the conventional
PID and the other not-so-conventional GMC [18]. The
classic tuning methods or heuristics to determine the
PID control parameters were presented by Ziegler and
Nichols (1942); they have significantly impacted prac-
tice and are still used today, not so much in the appli-
cation but as a base and reference. Comparison, since
they do not give a good tuning, these methods are
based on the characterization of the process dynamics
using two parameters with which the parameters of
the PID controller are determined.

The frequency response method was implemented
to characterize the system dynamics in a closed loop
using only the proportional control action. Once this is
done, Kp must be increased, starting from zero, until
the system presents sustained oscillations at the out-
put. This takes the approach to the limit of its stability.
The parameters that characterize the system dynamics
are Ku and Tu, where Ku is the proportional gain that
makes the system oscillate sustainably, with oscillation
period Tu. Once determined these parameters are, the
PID parameters are obtained with Table 1 [19].

Table 1. ISE and States of Evolution

Neuronal Excitation
ISE 10−2

States of
Architecture Function Evolution

(1,1,1) (FT, FL, FBR)
Four Tangential

0.3191 1.0737 × 109
outputs slope 1.5

Four Logarithmic 0.2966 1.0737 × 109
outputs slope 1.5
Three Gaussian Radial

0.1887 27outputs Basis slope 0.5

PID control: equation (26).

dx

dt
= K

(
(xsp − x) + 1

Ti

∫ t

0
(xsp − x) dt + Td

d(xsp − x)
dt

)
(26)

Control GMC: equatiom (27).

dx

dt
= k1 (xsp − x) + k2

∫ t

0
(xsp − x) dt (27)

3. Results and discussion

The reason to train a neural network is to establish
the parameters of linearization of the mathematical
model, to the polymerization reactor shows that Figure
4 shows the linearization of the mathematical model by
training the evolutionary neural network, first training
generates the parameter sequentially to establish the
evolution of the same network.

(a) (b) (c)

Figure 4. Responses of Plant and EANN (a) Logarithmic function, (b) Gaussian Radial Basis, (c) Tangential function.

The graphics training, validation, and testing pro-
vide the main trends of how evolutionary neural net-
work (Figure 5), shows that the function of tangential
type (Figure 5a) training has a setting similar to the
function 0.79274 type logarithmic (Figure 5d). The

function of the Gaussian radial type training base set-
ting is at a value of 0.99957, indicating that the radial
basis function has lesstendency to over-learning (Fig-
ure 5g). The graphics of validation and testing has
similar behaviour for the three functions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Training, Validation, and Testing of EANN

The results obtained by the evolutionary neural
network are shown in Table 1 , in the same observ-
ing the architecture of the artificial neural network
and the evolutionary status of evolution, which has
the same for different excitation functions. It should
mention that simulations were conducted in Matlab,
changing the number of outputs of the neural network
from a range of 2 outputs of each neuron up to 4 out-
puts, which are obtained from evolutionary states. The
states of evolution provide the total number of neurons
evolved for the control system.

One of the advantages of implementing a control
system with evolutionary artificial neural networks lies
mainly in obtaining simple neural structures, which
evolve according to the dynamics of the process itself,
that is, with a basic design (neuronal phenotype). It is
possible to have a capacity of adaptability to dynamics
and non-linearities without requiring constant training,

presenting a closed or open loop self-learning system,
as required by the process itself to be controlled. This
is not possible for a conventional control system such
as the PID that needs to be tuned in a closed loop,
which can take time and not adjust to the dynamics
of the process to be controlled.

We analyzed the three functions of excitation with
different slopes and their influence developments in
states; similarly, Integral Square Error (ISE) is calcu-
lated to determine which neural network is adjusted
to the dynamics of the process.

Similarly, who performed analysis for integral
square error (ISE) for two controllers used in the com-
parison (Table 2), the PID control and GMC, this
error provides the information necessary to establish
the setting of same to the dynamics process.
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Table 2. ISE PID control and GMC

Type of Control ISE
PID 0.3662

GMC 0.0198

The selected structure of the neural network
presents minor errors. Consequently, the smallest num-
ber of states of evolution is the evolutionary neural
network with a function of type Gaussian radial ba-
sis with a value of α=0.5, resulting in a total of 27
states of evolution. These states of evolution, to be
minimum, indicate that those who added neural net-
works do not present overlearning, that part of the
error spread toward the weights of forward and take
as part of training itself. The number of outputs the
neural network selected is 3 outputs; this number of
outputs can also be a good selection of a neural net-
work because it mainly to not be formed new neurons
that may cause the about learning.

Figure 6 shows the response of neural control with
the evolutionary function of Gaussian radial basis with
three neural network outputs; what will note that it
is adequately the set-point in a short period of time
without portraying a shot in response to a controller.

Figures 7 - 8 shows the response of the controller
for the other two excitation functions with different
slope and number of outputs (see Table 1), the reac-
tion of the control function tangential (Figure 7) with
four outputs is presented on a shot for the tempera-
ture of the jacket. However, the control is set values
set-point; in contrast, the driver’s response with the
logarithmic type function with a slope of 1.5 with the
same number of outputs; for this profile was noted
that the control response is adjusted to the set-point.
Without that present over tire, the control response is
very similar to the response given by the function of
base type radial with a slope of 0.5. The limitation of
the control function with the logarithmic type is that
it presents too many states of evolution, which cause
the evolutionary neural network shop to submit about
learning.

Figure 6. Profile Temperature of EANNs Control using a
radial basis function.

Figure 7. Profile Temperature of EANNs control using a
tangential function.

Figure 8. Profile Temperature of EANNs control using a
logarithmic function.

The response of the PID control is shown in Fig-
ure 9 ; it is worth mentioning that tuning of PID
control was performed using the technique of Zeigler-
Nichols [19] for each of the constants of the controller;
this response is observed on the drawbar that presents
this driver is large compared with the control with
neural networks, this is mainly attributable to the
technique of tuning which causes the over tire tends
to increase. The GMC also requires control of tun-
ing because this control depends on a constant of
the controller, which uses the technique used by Lee-
Sullivan [18] for tuning of the same; the response of
control GMC is shown in Figure 10, in comparison
with the PID control the GMC does not have control
over tire in its control response, which reaffirms that
the technique of tuning of the controller is sensitive to
the response of the same.
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Figure 9. Profile Temperature using a PID controller

Figure 10. Profile Temperature using a controller GMC

In addition to the minimization of the ISE in con-
trol, the disturbances that can occur in the system
are essential to measuring the response capacity of
the control system; for the process studied. In this
work, they were subjected to two disturbances and
measured the ability. Adjustment with the lowest dead
time (Td) and with a minimum frequency, the dis-
turbance applied was a negative step change for the
three control systems PID, GMC, and EANN. The
PID controller fails to return to the set-point (Figure
11), causing control instability, GMC the trajectory
of change in the set-point, variations in its sequence
(Figure 12), and evolutionary neural network system
change. The set point is followed sequentially without
presenting any variation (Figure 13). The introduction
of perturbations shows the robustness of the control
system, indicating that evolutionary neural networks
with radial Gaussian function are an option that offers
better results compared to PID and GMC control.

Figure 11. Controller PID with disturbance.

Figure 12. Controller GMC with disturbance.

Figure 13. Controller EANN with disturbance.

4. Conclusion

This work presented a new alternative control based on
evolutionary artificial neural networks through the use
of different excitation functions and the modification
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of the number of outputs of the neural network; using
these two variables noted the trend in the evolution
of the neural network. In the case study, the poly-
merization reactor for the obtaining of poly-methyl-
methacrylate (PMMA) is a system that features a
dynamic little predictable what conventional systems
of control such as the PID and other not so tradi-
tional as GMC can produce good results but with
the limitation of being restricted to the tuning of the
controller, which was not the case with the control
based on evolutionary neural networks, this type of
control is properly adjusted to very dynamics of the
process without having the need for a constant tuning,
in addition to the control that is based on evolutionary
neural networks also decreases the overshoot on the
controls that are of a conventional type such as PID
and GMC.

Concerning the different types of excitation func-
tions, it is noted that the more complex function, as it
is the type of radial basis, generates a better response
from the controller based on evolutionary neural net-
works. When compared with the control of function
logarithmic type, the difference lies in the minimiza-
tion of the states of evolution, for the radial basis
function of the number of outputs is minor, in addition
to presenting a minimum of states of evolution, which
indicates the probability of the network not to show
a tendency to overlearning and so not getting a good
response of the control.

Another option for training the evolutionary artifi-
cial neural network is Deep Learning, which can gener-
ally use under the supervised neural network training
scheme; it can be an alternative for this type of system,
if there are enough weights to carry out the projection
of the dynamics of the process, all under a supervised
training process, with simple neural structures or ar-
chitectures. Another alternative to deep learning is a
neural network evolution algorithm, which can be a
new field of study for controlling nonlinear processes.
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