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Abstract Resumen
The uncontrolled charging of electric vehicles poses
a great challenge for distribution network operators
and power system planners. Instead of focusing on
controlling this uncontrolled load, a model that uses
contingency analysis variables to calculate the power
capacity needed in the power system is proposed.
The unserved power variable is used to evaluate the
amount of uncovered load power at each bus of the
system, followed by the calculation of the additional
power capacity required using a photovoltaic and
storage system and another constant generation al-
ternative in the 14-bus IEEE power system with in-
formation on some electric vehicles and daily load in
the power system of Peru. The results obtained in
the power system with distributed generation, the
absence of unserved power, corroborate the success
of the methodology used. This model provides tools
to both distribution network operators and power
system planners, reducing the impact on the power
system of electric vehicles and providing a methodol-
ogy applicable to other electric distribution systems
with uncontrolled loads.

La carga no controlada de vehículos eléctricos plantea
un gran desafío para los operadores de redes de dis-
tribución y los planificadores de sistemas de potencia.
En lugar de focalizarse en el control de esta carga
no controlada, se propone un modelo que utiliza va-
riables de análisis de contingencias para calcular la
capacidad de potencia necesaria en el sistema de po-
tencia. Se emplea la variable de potencia no servida
para evaluar la cantidad de potencia de carga no cu-
bierta en cada barra del sistema, seguido del cálculo
de la capacidad de potencia adicional requerida uti-
lizando un sistema fotovoltaico y de almacenamiento
y otra alternativa de generación constante en el sis-
tema de potencia IEEE de 14 barras con información
sobre algunos vehículos eléctricos y la carga diaria
en el sistema de potencia de perú. Los resultados
obtenidos en el sistema de potencia con generación
distribuida muestran que no hay presencia de potencia
no servida, corroborando el éxito de la metodología
utilizada. Este modelo brinda herramientas tanto a
los operadores de redes de distribución como a los
planificadores de sistemas de potencia, reduciendo el
impacto en el sistema de potencia de los vehículos
eléctricos y aportando una metodología aplicable a
otros sistemas de distribución eléctrica con cargas no
controladas.
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1. Introduction

Electric Vehicles (EVs) have become popular due to
their low emissions, high efficiency, and lower operating
costs [1]. However, the increase in EVs has created chal-
lenges for the electricity grid, including uncontrolled
charging that strains distribution networks (DNs). This
article proposes a system consisting of photovoltaic
(PV) generation and battery energy storage (ES) that
can be implemented to optimize the use of PV and
battery systems, minimize the cost of EV charging,
and reduce grid load [1, 2].

EVs present challenges to power grid capacity,
charging infrastructure, and ES technology [3, 4].
Vehicle-to-Grid (V2G) and Distributed Generation
(DG) have been proposed as supportive technologies
to address these issues [1]. A model of the impact of
local EV adoption on DNs is presented in [5], pos-
ing a challenge to Distribution Network Operators.
Monte Carlo simulation (MCS) can assist operators in
understanding the impact of their policies on system
performance and identifying potential risks associated
with certain decisions [6] as a way to address these
issues.

According to a study by [7], MCS usage is a valu-
able tool for assessing the impact of uncertain factors
on the performance of power systems (PSs). The oper-
ating condition of the electricity DN can be enhanced
using MCS. The presence of the variable Not Served
Power (NSP) shows energy-depleted or overloaded PSs
operation conditions.

PV generation and ES technologies have been pro-
posed as potential solutions for integrating EVs into
the power grid, as suggested in [1], [6]. NSP optimiza-
tion has been proposed as a method for monitoring PS
performance. This method covers operational costs in
contingencies, as NSP will be expelled from the load [8].
V2G technology is also a solution to the challenges of
uncontrolled EV charging, since it can help mitigate
negative aspects and improve sustainability [9]. MCS
has been suggested as a potential tool for analyzing
the impact of DG supplying surplus load required by
EVs.

A description of complementary analysis examines
the interaction with the EVs adoption. The interac-
tion between the intermittency generated by renewable
generators and the storage capacity allowed using the
V2G charging process is described in [2]. A stochas-
tic methodology associated with EVs smart charging
process is considered in [4], focusing on battery degra-
dation analysis. While [3] is focused on the interplay

between different variables required for a smart charg-
ing process. The Internet of Energy environment is
adapted according to future smart grid operation re-
quired.

As proposed in [10], DG can help mitigate the nega-
tive impacts of uncontrolled EV charging and improve
sustainability. DG can supply energy to the grid during
peak hours and balance the load, reducing the impact
of uncontrolled EV charging on the power grid. To de-
termine appropriate energy policies, it is important to
anticipate energy deficiencies. Reference [5] proposes a
model that characterizes the geographic and travel pat-
terns of EV owners’ behavior. This provides insights
into their travel behavior and energy demands.

The study proposed MCS usage to analyze the mid-
term effects of uncontrolled EV charging. This con-
tributes to establishing energy policies that meet the
energy demands of EV owners. These measurements’
implementation enhanced the stability and reliability
of the electricity DN.

The method generates snapshots of potential sce-
narios based on global trends and Peru’s EV trans-
portation market, and it is valuable in optimizing the
electricity DN using algebraic modeling. The study
aims in developing policies that meet energy demands
while ensuring stable and reliable electricity DN con-
ditions. The need for future charging stations and DG
strategies due to EV charging is highlighted in [6].

2. Materials and Methods

Different levels of EVs adoption will be analyzed to
evaluate the impact on DN energy required, using
worldwide and Peruvian information. The projection
reviews Peruvian actual and historical vehicle fleet
stratification.

The methodology presented in the article involves
a loop that starts from EV model information and
goes up to the stage of saving data, as illustrated in
Figure 1. This loop is applied to all EV models and
the three scenarios of EV adoption mentioned in the
section “2.3 Multiple Scenarios.” Table 1 shows the
terminology employed in the current paper.

The resulting data is then processed through 2 sep-
arate processes. The MCS is the first process, reducing
the amount of data. The DN analysis explained in
section “2.8” is the second process. The information
gathered from these processes is used to compare and
evaluate the designed system that integrates PV gen-
eration and ES to tackle the surplus energy demand
caused by uncontrolled charging of EVs on the DN.
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Figure 1. Methodology and input data: (a) Monte Carlo simulation input related to electric vehicle models, and
explanations of daily travels (b) daily trip times probability density function (PDF) (c) daily traffic speed category (d)
speed value cumulative density function per traffic speed category (e) results from Monte Carlo simulation, input for
next steps

Table 1. Terminology employed in the current paper

Terminology Description
PS Power System

MCS Maximum Continuous Service
V2G Vehicle-to-Grid

GAMS General Algebraic Modeling System
NSP Not Served Power
EVs Electric Vehicles
PC Power Capacity
DG Distributed Generation
DN Distribution Network
PV Photovoltaic
ES Energy Storage

OPF Optimal Power Flow
NSE Not Served Energy

2.1. Uncontrolled charging projection descrip-
tion in Peru

Peruvian EV imports have been rising (as reported by
the Economic Studies Department of AAP, 2019) since

2016. Until August 2019, there were 253 hybrid and 16
electric vehicles imported. The global number of yearly
electric vehicles imported was 11 in 2016, 93 in 2017,
and 165 in 2018. In total, 535 EVs were reported until
August 2019. Peruvian government reported the num-
ber of vehicles on the road until 2018 of each category:
cars, station wagons, and pickup tracks.

2.2. Uncontrolled charging projection process
in Peru

The task projects the optimistic, pessimistic, and
business-as-usual electric vehicle (EV) adoption rates
in Peru. This estimates the controllable charging rate
using market participation as a point of reference and
calculating the uncontrollable charging rate. The un-
controllable charging rate is calculated as a comple-
ment of the controllable charging rate, which is as-
sumed to vary yearly depending on regional and global
EV adoption trends.

The assumptions for the pessimistic and optimistic
projections are based on current trends. They may not
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hold in the future. Electric vehicle sales are expected
to continue increasing due to government incentives,
reduced battery costs, and increased consumer aware-
ness.

2.3. Multiple scenarios

This study examines the potential impact of EV adop-
tion on energy demand in Peru’s PS. Three growth
scenarios for EV adoption are presented: low (15%
per year), medium (25% per year), and high (40% per
year). Three scenarios of 2000, 2500, and 3750 EVs
estimate the number of uncontrolled charging EVs in
the medium term. The scenarios were developed using
Peruvian and worldwide data [11].

Based on the scenarios, the authors evaluated the
potential impact of EV adoption on Peru’s PS under
different conditions. The selection criteria for the sce-
narios were based on realistic and varied growth rates,
worst-case analysis, and historical and current data.
A review of Peru’s actual and historical vehicle fleet
stratification is also provided.

As of August 2019, 253 hybrids and 16 EVs were im-
ported into Peru. The Peruvian government reported
the number of vehicles on the road until 2018 for each
category [12]. For further details, refer to section 2.2.

2.4. Monte Carlo simulation analysis

Figure 1a shows how EVs depart from and arrive at
different busbars, with departure and arrival times
based on EV owner travel and geographic patterns [5].
The model uses Ns samples (s), T time periods (t),
and NV EV s (v) characterized with stochastic varia-
bles [13].

Figure 1b displays the stochastic variables [9],
depv,s and arrv,s that are fit into probabilistic dis-
tributions [2], with binary variables representing the
states (depst,v,s and arrst,v,s). Figure 1c and 1d de-
pict probability characterizations of EV speed variable
(svt,v,s) and distance between buses corrected using
tdcfv,s and length L(Frv,s : Tov,s).

tdv,s = L(Frv,s; Tov,s) × tdcfv,s (1)

Equation (1) combines stochastic parameters of EV
location state Frv,s and Tov,s, with tdcfv,s to deter-
mine the final travel distance tdv,s. Specific EV data
is required for MCS analysis, such as Battery Capacity
(BCES), Riding Specific Consumption (SCv,s), State
of Charge (SoCmin and SoCmax), maximum charging
power (Pvmax), charging and discharging efficiency
(nchg and ndsg), road consumption value (Rt,v,s), and
binary variable index (Xt,v,s).

2.4.1. Pseudo code – travel modeling

1. Define departure time or arrival time and tem-
poral road distance travelled variable t = depv,s

and on road distance travelled, rdtv,s = 0 for de-
parture & t = arrv,s) and rdtv,s = 0 for arrival
travel.

2. Start Loop to fill the road distance traveled until
surpassing the travel distance, as in equations
(2) and (3).

while rdtv,s ≤ tdv,s{ (2)

rdtv,s = +svv,s × 24/T (3)

3. Conditional to check if the last stage of departure
travel is reached as in equations (4) and (5).

if rdtv,s ≤ tdv,s{ (4)

Rt,v,s = svv,s × SCv,s/ndsg × 24/T (5)

4. Assign a value to on-road consumption for non-
last stages of departure travel as in equation
(6).

else{Rt,v,s = (svv,s+tdv,s−rdtv,s)×SCv,s/ndsg} (6)

5. End loop assigning the value of departure end
time or arrival start time and binary state of
on-road as in equation (7)) for departure trip
and equation (8) for arriving trip.

Xt,v,s = 1 ∧ t = +1}dev,s = t (7)

Xt,v,s = 1 ∧ t = −1}aiv,s = t (8)

Variables such as dev,s and aiv,s mark the end of
the departure trip and the time when the EV is ready
to begin the return trip, respectively.

The binary variable CSb,t,v,s tracks the charging
bus state for the EV allocated in bus b. Equations (9)
and (10) enforce constraints related to the charging
bus state.

CSF rv,s,t,v,s = 1∀arrv,s < t < depv,s (9)

CST ov,s,t,v,s = 1∀dev,s < t < aiv,s (10)

The variables ChRv,s and CC are defined as the
total energy required by the EV on the road and the
complete charge, respectively. These variables are as-
signed in equations (11) and (12), respectively.
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ChRv,s =
∑

t

Rt,v,s (11)

CC = Pvmax × 24/T × nchg (12)

2.4.2. Pseudo code – uncontrolled charging
modeling

1. Set 0 value to tchv,s as in equation (13).

tchv,s = 0; ∀v ∈ NV ∧ s ∈ Ns (13)

2. Set charging time: departure and arrival as in
equation (14).

t = dev,s ∧ t = arrv,s + 1 (14)

3. Increase and assign the value of uncontrolled
vehicle charge UCb,t,v,s, according to temporal
charge tchv,s, measuring uncontrolled charging
in the corresponding bus, without reaching the
energy required as in equations (15) and (16).

tchv,s = +CC (15)

if tchv,s ≤ ChRv,s{UCb,t,v,s = CSb,t,v,s × CC} (16)

4. Assign uncontrolled charge to the time while
reaching the energy required as in equation (17).

else{UCb,t,v,s = (ChRv,s + CC − tchv,s) × CSb,t,v,s}
(17)

5. End loop as in equation (18).

t = +1} (18)

Equation (19) is used to obtain the information on
the required Peak Load, PLRs, which is reported as
the final output of the MCS. The load of PS in bus b is
represented by Pdpsb,t. Figure 1e provides a summary
of this information, showing the daily cumulative en-
ergy required by the DN for all models and scenarios.
Figure 1e compares only the maximum MCS outputs,
which cause more DN load during peak hours. On the
other hand, the minimum MCS output represents the
minimum impact on the peak hour charging state.

PLRs = max

(
t,
∑

b

(∑
v

UCb.t.v.s + Pdpsb,t

))
(19)

2.5. Interaction between MCS and optimal
power flow

Equations (21) and (22) show how the outputs of MCS
are chosen. The surplus charge is added to the PS
load and denoted as Pdb,t,s. The information obtained
from MCS analysis (Equations (21) and (22)) is an
important input for optimizing the operation of the
electricity DN, specifically the transmission subsection,
using algebraic modeling.

[PLRsmax, smax] = max(s, PLRs) (20)

[PLRsmin, smin] = min(s, PLRs) (21)

Pdb,t,s = Pdpsb,t,s +
∑

UCb,t,v,s (22)

2.6. Optimal power flow analysis

The electric OPF is modeled in GAMS software, us-
ing CONOPT minimizing of from equation (24) for
each of the 6 cases (3 scenarios, 2 MCS outputs). This
process provides the amount of NSP required in each
bus of the DN for each period analyzed, as in equation
(25). GAMS optimization and MCS complementary
analysis approaches could overcome the challenges of
integrating EVs and DG into PSs [14].

2.6.1. Objective function

The main output is the energy allocated to daily Not
Served Energy (NSE) with half-hourly information.
It involves evaluating equations for all t ∈ T ∧ s ∈
{smin, smax}. NSE is used to allocate the amount of
NSP during this time period, as per equation (23).

NSP is used as a slack variable to identify areas and
the amount of energy required for surplus EV charg-
ing, and it can also represent the amount of power
required as surplus generation in its busbar to avoid
PS failures [8].

The objective function (of) for the optimization
of energy losses associated with network operation is
expressed in equation (24), where the power genera-
tion at the slack bus Pgslack is also evaluated. The
penalty price of Cpen = $6, 000.00 for NSE in Peru is
mentioned according to reference [15]. Using NSP as
a data source can help planners compare generation
source alternatives, fit the energy required in time-
space modeling, and dimension the DG conditions
along the PS.

NSEk = 24/T × NSPk (23)

of =
∑

(CpenNSEk) + Pgslack (24)
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2.6.2. Optimal power flow constraints

The OPF constraints are the active and reactive power
balance. Equations (25) and (26) define the power bal-
ance, where Pgk and NsPk denote generation power
and non-spinning reserves, while Pdk represents the
required power load.

Pgk + NSpk = Pdk +
∑

Pkm (25)

Qgk = Qdk + Qshk +
∑

Qkm (26)

The variables Qgk, Qdk, relate to reactive power
generation and load in each bus. Equations (27) and
(28) calculate the active and reactive power per line
(Pkm and Qkm) and apparent power Skm in equation
(29) controls the overcharge in the corresponding power
line.

Pkm = VkVmYkmcos(thkm + dkm) − V 2
k cos(tkm) (27)

Qkm = −VkVmYkmsin(thkm + dkm) + V 2
k sin(tkm)

(28)

Skm =
√

P 2
km + Q2

km ≤ Skmupper (29)

The variables Vi, di, Qgi, Pgi have lower and upper
bounds, denoted by xlower and xupper in equation (30).
The section refers to [8] for details on voltage parame-
ters (V and d) and admittance matrix parameters (Y
and t).

xlower ≤ x ≤ xupper (30)

2.7. New power system capacity to guarantee
normal operation

Two alternative options were considered for the model
developed to determine the failure time and bus. The
first option involves a linear increase in Power Ca-
pacity (PC) in a specific bus. The second option is a
combination of PV generation and an ES system.

Equation (31) describes the first option, which mod-
els new PC (PNgk,t) to operate throughout the day to
recover the investment costs. The second option aims
to minimize the objective function of over costs with
suffix cost xcost related to NSP calculated (NSPck,t).

PNgk,t = Pgk,t + NSPck,t (31)
Equations (32) to (34) describe the process of the

second option, which covers the new PC required, in-
cluding power dimension (PhPCb) and energy storage

(SSECb), and is adjusted to solar availability (Saft)
and States of Charge variation (SoCvk,t) to redis-
tribute energy stored half hourly (Dt). The source
of surplus generation capacity is not analyzed due to
its variety.

fo = PhPCcost ×PhPCk +SSECcost ×SSECk (32)

PhPCk × Saft ≥ NSPck,t + SoCvk,t (33)

SoCk,t = SoCk,t−1 + SoCvk,t−1 × Dt (34)

2.8. Distribution network impact

Studies indicate that EVs have an impact on DNs. The
daily energy requirements are independent of the EV
model. The voltage data and the energy required by
EVs are collected and processed through data science,
obtaining statistical information using MCS. The EVs
charging can cause voltage drops and instability in the
network, which can be addressed by using ES systems
and smart charging strategies [2], [5].

2.9. Study Case

2.9.1. Uncontrolled charging projection results
in Peru

Assumptions and sources of information use market
participation as a reference point for regional and
global controllable charging rates. The cumulative EV
sales are assumed as total on-road EVs, and EV sales
are expected to continue increasing due to govern-
ment incentives, reduced battery costs, and increased
consumer awareness.

The optimistic projection assumes a yearly increase
in EV sales of 25%, and the controllable charging rate
is assumed to be 70%. The pessimistic projection as-
sumes a yearly increase in EV sales of 10%, and the
controllable charging rate is assumed to be 50%. These
assumptions were used to project EV adoption in Peru.

Table 2 presents ranges of the projection of EV
adoption in Peru from 2023 to 2031. This includes
cumulative EV sales, controllable and uncontrollable
charging rates, and the number of EVs on the road.
The data is presented in ranges, from optimistic, pes-
simistic, and business-as-usual scenarios.
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Table 2. Uncontrolled charging electric vehicles (projected data 2023 - 2031)

Year

Total Cumulative Market Uncontrollably Uncontrolled
Vehicles EV Participation Charging Charging

Sales Rate EVs
N° N° EVs % % N° EVs

2023 366,900-372,700 2,450-2,930 6.67%-7.85% 85.30%-86.70% 2,120-2,490
2024 375,800-385,900 3,180-4,170 8.45%-10.81% 84.30%-85.80% 2,719-3,460
2025 384,000-399,800 4,200-5,750 10.94%-14.39% 83.30%-84.90% 3,606-4,880
2026 392,300-414,500 5,480-7,770 13.97%-18.74% 82.30%-84.00% 4,760-7,070
2027 400,800-430,000 7,190-10,350 17.95%-24.07% 81.30%-83.10% 6,455-9,060
2028 409,400-446,400 9,370-13,500 22.84%-30.21% 80.30%-82.20% 8,485-11,978
2029 418,200-463,700 12,030-17,350 28.73%-37.40% 79.30%-81.30% 10,963-16,652
2030 427,100-482,100 15,220-22,020 35.63%-45.65% 78.30%-80.40% 14,372-17,494
2031 436,100-501,600 18,920-27,650 43.31%-55.31% 77.30%-79.50% 15,390-24,768

2.9.2. Multiple scenarios

The article is based in three scenarios for the growth
of EV sales in Peru: optimistic, business-as-usual, and
pessimistic, with controllable charging rates estimated
for each scenario. Based on this information and analy-
sis of uncontrolled charging of EVs, the study projects
that the number of EVs on the road in Peru for 2023

will range from 2450 to 2940. The article also compares
the technical characteristics of different EV models
and their effects on the DN, as shown in Table 3, with
the KIA EV6 found to require the most energy among
the EVs studied. However, the scenarios presented are
based on broad assumptions and may not accurately
reflect the specific conditions of the Peruvian market.
More information is shown in Table 2.

Table 3. Electric vehicle models (2,021 data)

EV BCES SCv,smin SCv,smax Pvmax SoCmin SoCmax
kWh kWh/km kWh/km kW % %

TSP 100 0.18 0.21 250 5 80
AQ4 82 0.181 0.181 125 15 95

KEV6 77.4 0.21 0.227 228 10 80
BHEV 76.9 0.164 0.207 360 30 80

2.9.3. Monte Carlo simulation analysis

The study analyzed three scenarios with stochastic
micro scenarios. Scenario 1 had 2,000 EVs with 200
samples. Scenario 2 had 2,500 EVs with 120 samples.
Scenario three 3 had 3,750 EVs with 80 samples. The
analysis included 1.0 × 10+6 uncertainty stochastic mi-
cro scenarios. In Section 2.4, the variables depv,s and
arrv,s were fitted to a normal distribution. Figure 1b il-
lustrates significant differences between the probability
distribution functions of departure and arrival times.
The arrival time has a standard deviation encompass-
ing after-work hours when individuals may attend to
household duties or socialize after work, which does
not occur similarly during morning hours before work.

According to [13], the Tesla Model 3 has a BCES
of 2.88×10+8 J (80 kWh). The specific energy consump-
tion for the vehicle falls within the range of SCv,s ∈<
684; 900 > J/m(< 0.19; 0.25 > KWh/Km). The EVs

maximum charging power is approximately Pvmax =
1.5 × 10+5 W with nchg = 90% and ndsg = 90%. To
model EV batteries, the minimum State of Charge
SoCmin is set to 15% of the battery capacity, while
the maximum State of Charge SoCmax is set to 95%
of battery capacity.

2.9.4. Interaction between MCS and OPF

Travel and geographic uncertainties characterization
involves categorizing the number of EVs per bus as
either "From" or "To" bus based on the departure trip.
Figure 2 displays boxplots of the hourly total energy
required by the DN, comparing the KIA EV6, which
requires the greatest amount of energy, with the Tesla
Model 3, which requires the least energy (as seen in
Figure 1e). The values reported in Figure 2 show that
the KIA EV6 is the model that consumes more energy,
triggering a higher energy requirement for the DN.
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Figure 2. Road daily consumption needed per scenario and time

2.9.5. Optimal power flow usage

The IEEE 14 Power Bus System [16] represents the
PS of socioeconomic class A in Peru with variations in
power line length. The electric market load data from
February 2020 serves as the daily load factor. The traf-
fic categories effects of high, medium, and low speed
are reported on [13]. Google Maps provided traffic his-
tory data for three categories represented by normal
distributions. The first category is high speed, with a
mean value of 13.89 m/s (50 km/h) and a standard
deviation of 5.56 m/s (20 km/h). The second category
is medium speed, with a mean value of 9.72 m/s (35
km/h) and a standard deviation of 4.17 m/s (15 km/h).
The third category is low speed, with a mean value of
5.56 m/s (20 km/h) and a standard deviation of 2.78
m/s (10 km/h).

2.9.6. New power system capacity to guarantee
normal operation

The first surplus PC option needs no additional data,
but the PV generation with storage system option
requires a solar availability factor, obtained from [17],
with cost data from [18]. Subsection 2.7 presents con-
straints and the objective function of power interaction
with NSP. Constraints (32) to (34) are complemented
by equation (35), limiting the SoCk,t variable to the
bounds of 0 and the capacity of the storage system,
SSECk.

0 ≤ SoCk,t ≤ SSECk (35)

The objective function variables in equation (33)
include PhPCcost at 1.30 $/W for photovoltaic PC
cost and SSECcost at 1.11 × 10−4 $/J (400 $/kWh)
for storage system energy capacity.

2.9.7. Distribution network analysis

Two final syntheses that closely resemble the global
data are obtained. The first one represented 4% of
the occurrences. The other one collected 10% of the
occurrences. These reductions are evaluated in a com-
monly used DN (IEEE 13 BUS power system) using
Simulink from MATLAB software. The effect of all
the simulations performed on the DN is reported in
this section.

3. Results and discussion

3.1. Monte Carlo simulation analysis

Figure 3 shows the number of EVs in the PS and two
figures for each scenario, illustrating the geographic
and travel patterns of the EVs. Table 4 provides ad-
ditional information on the number of EVs departing
from and arriving at each bus on their first trip, along
with geographic patterns uncertainty. The headers in
Table 4 are classified as "Min MCS" and "Max MCS,"
representing the minimum and maximum scenarios of
daily peak load reported from MCS outputs. These
classifiers can help assess the potential impacts of EVs
on the PS.
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Figure 3. Amount of arriving electric vehicle in maximum Monte Carlo simulation output - scenario 1

Table 4. Number of electric vehicles from and to each bus per scenario for Monte Carlo simulation outputs

Scenario 1 Scenario 2 Scenario 3
EVs Min MCS Max MCS Min MCS Max MCS Min MCS Max MCS
Bus Fr To Fr To Fr To Fr To Fr To Fr To

1 0 0 0 0 0 0 0 0 0 0 0 0
2 180 242 171 269 227 265 224 288 325 460 307 424
3 186 132 197 117 208 151 240 149 337 219 333 227
4 179 255 177 256 215 296 223 336 360 454 342 502
5 204 120 200 103 214 152 227 141 328 217 380 209
6 186 225 188 222 208 339 232 286 320 463 352 440
7 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 191 179 166 188 229 256 224 264 358 341 360 342
10 172 196 204 157 244 227 257 242 340 353 322 344
11 172 131 153 164 240 183 232 197 343 287 329 274
12 188 132 201 119 234 150 234 147 357 202 341 221
13 170 244 167 260 249 290 196 280 324 467 337 468
14 172 144 176 145 232 191 211 170 358 287 347 299

3.2. Interaction between MCS and OPF

Figure 4 compares the application for the Tesla Model
3, which has the lowest specific consumption. The first
application is the PSMCS which is in the right section.
The values are also related to the Maximum output
of MCS. Meanwhile, Table 5 presents the mean char-
acteristics of daily load for different scenarios with

minimum and maximum MCS outputs.
The energy load Eds is computed using equation

(36). The peak load Pdmax,s represents the maximum
daily load supplied by the PS grid for each scenario an-
alyzed, as expressed in equation (37). Finally, the load
factor LFs is determined by dividing the mean power
load by the max power load, as shown in equation
(38).
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Figure 4. Power System Performance Comparison of Optimal Power Flow (PS_MCS), Photovoltaic and Energy
Storage (NPS_PVES), and Continuous Generation (NPS_Cont)

Table 5. Load data per scenarios for Tesla (2018) electric vehicle & Optimal Power Flow performance for all scenarios

BAU
w/o Scenario 1 Scenario 2 Scenario 3
EVs

Daily Min Max Min Max Min Max
Load MCS MCS MCS MCS MCS MCS
Eds 5,704.6 5710.58 5724.82 5711.51 5729.43 5715.56 5742.4(MWh)

Pdmax,s 257.2 257.25 259.66 257.31 259.91 257.51 264.23(MW)
LFs 0.906 0.906 0.907 0.905 0.906 0.910 0.906
Egs 5,979.1 5985.82 6000.95 5986.67 6005.91 5991.1 6017.9(MWh)
Loss 274.5 275.24 276.12 275.17 276.48 275.54 275.5(MWh)
NSE 0.5 0.62 2.74(MWh)
Max

1.01 1.25 5.47NSP
(MW)

NSP bus 14 14 14
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Eds =
∑∑

Pdb,t,s × 24/T ; s = {smin, smax} (36)

Pdmax,s = max
(∑

Pdb,t,s

)
; s = {smin, smax} (37)

LFs =
∑∑

P dp,t,s

T

Pdmax,s
; s = {smin, smax} (38)

The difference in peak load between the maximum
and minimum MCS outputs was observed to be in-
creasing, indicating the stochastic effect of the analy-
sis. For Scenario 1, the gap between MCS outputs is
2.41 × 10+6 W . For Scenario 2, the difference in MCS
outputs is 2.60 × 10+6 W . For Scenario 3, the gap be-
tween MCS outputs is 6.72 × 10+6 W . The difference
in daily energy load between maximum and minimum
MCS outputs is reported per scenario. Scenario 1 has
a difference in daily energy of 5.13 × 10+10 J (14.24
MWh). Scenario 2 has a difference in daily energy of
6.45×10+10 J (17.92 MWh). Scenario 3 has a difference
in daily energy of 9.66 × 10+10 J (26.84 MWh). The
increment in the gap is explained due to the number
of EVs in the tested scenarios.

3.3. Optimal power flow usage

The model commonly employs OPF to evaluate PS
performance concerning different EV charging scenar-

ios. Figure 4 displays the performance of PS and NSP
required to maintain normal operation, with the high-
est output of the Tesla Model 3 EV’s MCS specified.
Table 5 summarizes the optimized power flow findings,
including variables such as Egs and Losss representing
energy generated, energy gaps, and NSEs allocating
NSP for all buses during the day. Equations (39) to
(41) define these variables.

Egs =
∑∑

Pgb,t,s × 24
T

; s = {smin, smax} (39)

LossS = Egs − Eds; s ∈ {smin, smax} (40)

NSEs =
∑∑

NSPb,t,s × 24
T

; s = {smin, smax} (41)

The tested model enables the identification of the
bus bar that requires more capacity and whose option
is best suited to supply it. The amount of NSP will
determine the required capacity for new power plants.
Table 6 reports the information for the Tesla Model 3
(2018).

The study found that the NSE was expelled at the
last bus of the PS, which is located farthest from the
generation buses (#14). The amount of NSE increased
as the number of EVs in each scenario.

Table 6. New power system (NPS) capacity to guarantee normal operation as all day fixed value; with photovoltaic -
storage system (PSS) option

OPF

Scenario 1 Scenario 2 Scenario 3
BAU Min Max BAU Min Max BAU Min Max
w/o MCS MCS w/o MCS MCS w/o MCS MCS
EVs EVs EVs

EgNP S (MWh) 5975.91 5982.49 5998.33 5975.16 5982.75 6002.67 5962.67 5974.66 6004.41
LossNP S (MWh) 271.36 271.91 273.51 270.62 271.25 273.25 258.12 259.1 262.01

Max PgNP S 270.7 270.72 273.41 270.67 270.75 273.65 270.08 270.38 277.87(MW)
NPS Capacity 1.01 1.25 5.47(MW)
EgP SS (MWh) 5978.9 5985.49 6001.34 5978.86 5986.45 6007.05 5978.13 5990.15 6020.07

LossP SS (MWh) 274.36 274.91 276.52 274.31 274.95 277.63 273.58 274.59 277.67
Max PgP SS 270.82 270.83 273.41 270.82 270.84 273.65 270.71 270.72 277.87(MW)
PV Capacity 0.177687 0.219993 0.965943(MW)

Storage System 0.419278 0.519105 2.279288(MWh)
Busbar 14 14 14(#)

PSS cost 345,397.68 427,634.56 1,877,658.44($)
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3.4. New power system capacity to guarantee
normal operation

The PS requires additional generation capacity to ad-
dress the identified problem. The methodology section
offers options for obtaining extra generation capacity
using: microturbines, internal combustion engines, PV
generation mixed with a storage system, etc. Figure
4 displays the performance of the PS and the power
supplied by the PV-storage system in Maximum MCS
output for the Tesla Model 3. Table 5 provides infor-
mation about the required capacity of the new power
system (NPS). The cost of the PV-storage system is
reported for each scenario in Figures 5a, 5b, and 5c,
ranging from $ 0 to $7.40 ×10+5 for Scenario 1, $
2.22 ×10+5 to $ 7.81 ×10+5 for Scenario 2 and $ 5.88
×10+5 to $3.41 ×10+6 for Scenario 3. The cost of the
first option of adding capacity for an entire day is not
assessed in this study, but its PC is set constant as
NSP from PS OPF.

Figure 5. Not Served Energy Comparison and
Photovoltaic-Energy Storage Costs for Three Scenarios:
(a) for Scenario 1, (b) for Scenario 2 and (c) for Scenario 3

3.5. Distribution network results

Section 3.4 of the study examines the relationship be-
tween load and PS capacity. However, increasing the
general load does not necessarily require more PS ca-
pacity or increase the cost of PV and ES. The study
also shows that the load required by EV models does
not result in more NSP. These findings suggest that the
PS requirements and the EV model are independent.

Data reduction techniques are used to synthesize
the large amount of information processed. Two re-
ductions are performed on the data, with errors of
1.24% and 0.85% compared to the global data. The
reduction of 4% of the data is used to process the data
in MATLAB using the Simulink tool. The DN data is
used to redistribute EVs into the feeders of the IEEE
13 bus Power System, and the resulting performance of
the feeders is shown in Figure 6. The results indicate
that the voltage values remain within range for all
buses of the IEEE 13 bus Power System even under
uncontrolled charging assumptions.

4. Conclusions

The effect of EVs’ uncontrolled charging presence in
electricity markets is shown in this study, as seen in
Table 5 and Figure 2. The minimum and maximum
outputs from the Monte Carlo Simulations depend
on the specific consumption of the EV models, which
values are reported in Table 3. The EV model that
required more energy from the DN is the Kia EV6,
while the EV model that required less energy from the
DN is the Tesla Model 3, as shown in Figure 1 (e). The
highest consumption of scenario 3 is for the Kia EV6
model with 31.8 MWh, while the lowest consumption
of scenario 1 is for the Tesla Model 3 with 10.14 MW.

Even for the specific models of EVs that require
more energy, the NSP variable is not guaranteed to
be needed. Figure 5a shows that the models that did
no’t have NSP are the Kia EV6 (which has the highest
energy need) and Tesla S Plaid. Figure 5b and Figure
5c also reinforce this fact due to the intermittency of
maximum and minimum NSP presented in the OPF
executions.

On the other hand, the dependency noted in Fig-
ure 5 is the relationship between the costs of different
dimensions of the PV generation – ES System and the
amount of daily NSE presence in the OPF execution.
This relationship is not strictly linear, but for similar
NSE values, the cost of the system designed is close.
For example, in scenario 3, the highest value of NSE
is 6.84 MWh. The corresponding EV model is the Kia
EV6. The cost related to this point is $ 2.84 ×10+6.
But the highest system designed cost is $ 3.41 ×10+6

with a not served energy value of 5.94 MWh.
The impact of the uncontrolled charging is not rel-

evant in distribution, as shown by the voltage stability
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of the executed model. Even the further busbars have
voltage values that achieve the Peruvian electric distri-
bution policies’ bounds. The busbars 632, 645,646, and

633 have well-distributed voltage levels. The others
also have values according to policies.

Figure 6. Distribution Network Daily Voltage for each phase
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