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Abstract Resumen
Objective. The aim of this study was to use deep
learning for the automatic diagnosis of oral cancer,
employing images of the lips, mucosa, and oral cavity.
A deep convolutional neural network (CNN) model,
augmented with data, was proposed to enhance oral
cancer diagnosis. Materials and methods. We devel-
oped a Mobile Net deep CNN designed to detect and
classify oral cancer in the lip, mucosa, and oral cavity
areas. The dataset comprised 131 images, including
87 positive and 44 negative cases. Additionally, we
expanded the dataset by varying cropping, focus,
rotation, brightness, and flipping. The diagnostic per-
formance of the proposed CNN was evaluated by
calculating accuracy, precision, recall, F1 score, and
area under the curve (AUC) for oral cancer. Results.
The CNN achieved an overall diagnostic accuracy
of 90.9% and an AUC of 0.91 with the dataset for
oral cancer. Conclusion. Despite the limited number
of images of lips, mucosa, and oral cavity, the CNN
method developed for the automatic diagnosis of oral
cancer demonstrated high accuracy, precision, recall,
F1 score, and AUC when augmented with data.

Objetivo. El propósito de este estudio fue diagnos-
ticar automáticamente el cáncer oral en imágenes
de labios, mucosa y cavidad oral utilizando apren-
dizaje profundo. Se propuso un modelo de red neu-
ronal convolucional (CNN) profunda con aumento de
datos para el diagnóstico de enfermedades bucoden-
tales. Materiales y métodos. Se desarrolló una CNN
profunda de MobileNet para detectar y clasificar la
enfermedad de cáncer oral en la zona de los labios,
mucosa y cavidad oral. El conjunto de datos de 131
imágenes de labios, mucosa y cavidad oral estaba
compuesto por 87 casos positivos y 44 casos nega-
tivos. Además, el número de imágenes se multiplicó
mediante cambios de corte, enfoque, rotación, brillo y
volteo. Se evaluó el rendimiento de diagnóstico de la
CNN propuesta a través del cálculo de la exactitud,
la precisión, la recuperación, la puntuación F1 y el
AUC (Área bajo la curva) para la enfermedad de
cáncer oral. Resultados. El rendimiento general del
diagnóstico de la enfermedad de cáncer oral alcanzó
el 90.9% de exactitud y 0.91 AUC usando la CNN con
el conjunto de datos. Conclusión. El método CNN
desarrollado para diagnosticar automáticamente el
cáncer oral en imágenes de labios, mucosa y cavidad
oral usando aumento de datos mostró una alta ex-
actitud, precisión, recuperación, puntaje F1 y AUC
a pesar del número limitado de imágenes de labios,
mucosa y cavidad oral utilizadas.
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ral network, data augmentation, dental health, oral
cancer, oral disease
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1. Introduction

Oral diseases pose a significant global public health
challenge, particularly affecting less privileged pop-
ulations due to their widespread occurrence. Treat-
ment costs are often prohibitively high and remain
unattainable in many low- and middle-income coun-
tries. According to the World Health Organization,
managing oral diseases ranks as the fourth most ex-
pensive health condition in heavily urbanized nations.
Given its profound impact on overall health, oral health
is an essential determinant of human well-being and
a critical component of healthcare. Furthermore, the
presence of oral diseases increases the risk of chronic
conditions such as diabetes, respiratory issues, and
cardiovascular and cerebrovascular diseases [1].

Machine learning (ML), a subset of artificial in-
telligence (AI), employs statistical, probabilistic, and
optimization techniques that enable machines to learn
from historical data, acquire information, and make
predictions regarding new data based on the learned in-
formation [2,3]. Within dental clinical decision-making,
methods grounded in deep learning (DL), another sub-
set of AI, streamline processes and address intricate
challenges. Among these methods, a deep convolutional
neural network (CNN), a well-defined algorithm in DL,
has proven highly effective for organ segmentation and
the classification and detection of organs and diseases
within medical images [4–6].

ML has demonstrated remarkable accuracy and
precision, surpassing human judgment in predicting
medical outcomes [2]. DL techniques offer advantages
over feature-based methods in medical image analysis,
consistently outperforming healthcare professionals in
disease identification [7].

In the field of oral cancer diagnosis, DL has yielded
promising results in automated pathology analysis, oral
cavity imaging, confocal laser endomicroscopy imaging,
and fluorescence imaging. These advancements facili-
tate the prediction of cancer risk and patient diagnostic
outcomes, enabling the identification of subtle patterns
within large, noisy datasets. The ultimate goal is to
develop tools to improve public dental health [2], [7,8].

This article aims to implement a model for diagnos-
ing oral cancer using high-performance DL algorithms.
The proposed model can potentially be an asset in the
decision-making process for diagnosing this disease.

1.1. Literature review

The systematic review of the literature was conducted
using the PRISMA methodology. This approach facili-
tated a comprehensive understanding of the research
background, supported this work, and demonstrated
proficiency in machine learning (ML) and deep learn-
ing (DL) approaches, thereby ensuring the study’s
relevance [9].

The study presented in [2] develops and validates
four ML models to predict the occurrence of lymph
node metastases in early-stage Oral Tongue Squamous
Cell Cancer (OTSCC), both before and after surgery.
The random forest and support vector machine models
exhibit superior predictive performance compared to
traditional methods based on the depth of invasion,
neutrophil-to-lymphocyte ratio, or tumor budding.

Another study [7] explores an efficient imaging
method utilizing smartphones and a DL algorithm
for the automatic detection of oral diseases. The re-
searchers introduce the HRNet DL network and assess
its efficacy in detecting oral cancer. The proposed HR-
Net model demonstrates marginally improved perfor-
mance over the VGG16, ResNet50, and DenseNet169
models across 455 test images based on sensitivity,
specificity, precision, and F1-score metrics.

In a separate research endeavor [4], scientists auto-
mate the diagnosis of odontogenic cysts and tumors in
both jaws using panoramic X-rays and. They enhance
a modified deep CNN derived from YOLOv3 to detect
and classify these conditions. The overall disease clas-
sification performance improves when using CNN with
an augmented dataset compared to a non-augmented
dataset.

1.2. MobileNet

MobileNet uses depth separable convolutions, a tech-
nique that significantly reduces the number of param-
eters compared to networks that use regular convolu-
tions with the same depth. This reduction in parame-
ters allows for the creation of lightweight deep neural
networks. Developed by Google as an open-source CNN
class, MobileNet is an excellent base for training clas-
sifiers. The classifiers generated using MobileNet are
not only compact and fast, but also help minimize
model size and computational requirements. This is
accomplished by replacing standard convolution filters
with deep and point convolutions [10].

1.3. Performance metrics

1. Receiver operating characteristic (ROC)
curves: ROC curves are graphical representa-
tions widely employed to assess and compare the
performance of classifiers. These two-dimensional
graphs illustrate the trade-off between sensitiv-
ity and specificity in a classifier’s predictions.
They visually demonstrate the classifier’s per-
formance across various discrimination thresh-
olds, facilitating the classification and selection
of classifiers according to specific user require-
ments. These requirements frequently encompass
considerations of differential error costs and pre-
cision demands [11].
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2. Area under the curve (AUC): AUC is a sin-
gle scalar value that provides a comprehensive
measure of the overall performance of a binary
classifier. The AUC value ranges from 0.5 to 1.0,
where the minimum value indicates the perfor-
mance of a random classifier, and the maximum
value corresponds to that of a perfect classifier.
In Figure 1, the ROC curves for two scoring
classifiers, A and B, are presented. In this ex-
ample, classifier A has a higher AUC value than
classifier B [12].

Figure 1. Area under the curve [11]

3. Confusion matrix: A confusion matrix is a
table-like representation that shows the true and
predicted class of each case in the test set. This
matrix is essential for evaluating the performance
of a model in a classification problem. By pre-
senting a clear breakdown of true positives, true
negatives, false positives, and false negatives, it
enables a detailed understanding of the model’s
performance across different classes. Figure 2
provides a visual representation of the confusion
matrix, specifically designed for a binary class
classification problem [13].

Figure 2. Binary confusion matrix [12]

4. Accuracy: A test method is considered accurate
when it precisely measures what it is intended

to measure. In other words, it can effectively
determine a substance’s accurate amount or con-
centration within a sample [14].

Accuracy = TP + TN

TP + FP + FN + TN
· · · (1)

5. Precision: Precision in a test method is achieved
when repeated determinations or analyses on the
same sample yield consistent results. In the con-
text of accuracy, a precise test method exhibits
minimal random variation, enhancing trust in its
reliability. The ability of the test method to con-
sistently reproduce results over time underscores
its dependability [14].

Precision = TP

TP + FP
· · · (2)

6. Recall: Recall, also referred to as sensitivity,
denotes the capability of a diagnostic test to
correctly detect individuals afflicted with a par-
ticular disease or disorder. A test with high sen-
sitivity minimizes instances of ’false negatives,’
wherein the test fails to identify the presence of
a disease despite its actual existence [14].

Recall = TN

TN + FP
· · · (3)

7. F1 score: The F1 score integrates accuracy and
recall measurements into a unified metric, fa-
cilitating a comparative assessment of overall
performance across diverse solutions. The F1
score operates under the assumption that both
accuracy and recall hold equal significance [15].

F1Score = 2 ∗ Precision ∗ Recall

Precision + Recall
· · · (4)

1.4. Oral cancer

Oral cancer includes malignant tumors that affect the
lip, different areas of the mouth, and the oropharynx,
as shown in Figure 3. This form of cancer is more
common in men and older individuals, with significant
differences associated with socioeconomic status. In-
terestingly, in some countries in Asia and the Pacific,
oral cancer is among the top three cancers with the
highest occurrence [16].
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Figure 3. Oral cancer sore [16]

2. Materials and methods

2.1. Data acquisition

The dataset used in this study was acquired from the
Kaggle web platform [17], which offers open access
to downloadable data. The original data format com-
prised jpg images. The dataset included 131 cases, with
87 featuring images of lips, mucous membranes, and
the oral cavity indicative of oral cancer and the remain-
ing 44 showcasing images without oral cancer. Figure 4
visually summarizes the research methodology, clearly
outlining the phases. The implementation of this stage
is detailed in Section 2.6.1.

Figure 4. Model development methodology

2.2. Dataset partitioning

The partitioning of the dataset entails a non-
overlapping division of the available data into two
distinct subsets: the training dataset and the valida-
tion dataset. This separation provides one subset for
analytical purposes and another for model verification.

1. Training set: The training dataset constitutes
90% of the total dataset, encompassing 118 im-
ages of lips, mucosa, and the oral cavity. This
includes 78 images indicative of oral cancer and
40 images without signs of oral cancer.

2. Validation set: The validation dataset com-
prises 10% of the total dataset, featuring 13 im-
ages of lips, mucosa, and the oral cavity. This
includes 9 images indicative of oral cancer and 4
images without signs of oral cancer.

The implementation of this stage is detailed in
Section 2.6.2.

2.3. Model training, optimization, and tests

The CNN model proposed in this study was imple-
mented and trained on the Kaggle platform, utilizing
Python as the programming language due to its exten-
sive capabilities in machine learning (ML) and deep
learning (DL). These features make Python particu-
larly well-suited for managing the complexities of the
task. During this phase, the training dataset served
not only for the initial training but also for the pre-
validation of the model, thereby laying the groundwork
for further optimization and testing.

When validating the developed model, which ex-
hibits performance metrics ranging from 0.5 to 1.0,
areas requiring improvement are identified to enhance
its performance. Adjustments are made using the train-
ing dataset. Upon achieving satisfactory evaluation
metrics, the model is subjected to testing to verify its
effectiveness and reliability.

To evaluate the proposed model, the validation
dataset is employed to confirm its high performance.
If the outcomes differ from expectations, additional
iterations of training, optimization, and testing are
conducted until the desired results are achieved. This
iterative process is documented in Sections 2.6.3 and
2.6.4.

2.4. Diagnosis of oral cancer disease

Based on the performance results obtained from the
model tests, the capability for automatic diagnosis of
oral cancer is determined. This diagnosis pertains to
the images of the lips, mucosa, and oral cavity uti-
lized in the model. The implementation of this stage
is detailed in Section 2.6.5.
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2.5. Evaluation of the expected result

Following the diagnosis of oral cancer, the results ob-
tained are evaluated by comparing their accuracy, pre-
cision, recall, and F1 score. Through this comparison,
it is determined that the diagnosis provided by the
proposed model yields satisfactory results. The imple-
mentation of this stage is detailed in Section 2.6.6.

2.6. Implementation

2.6.1. Loading libraries and read in data

The development of the solution commences with
the loading of essential libraries, such as matplotlib,
NumPy, and pandas. Global parameters are defined,
and images of the lips, mucosa, and oral cavity, whether
indicative of the disease or not, are obtained. Key pa-
rameters include:

1. Size: Input size [18].

2. Epochs: The number of iterations over the en-
tire dataset [19].

3. Batch size: Division of the dataset into multiple
smaller batches [19].

4. Fold: The number of folds the dataset will be
divided into [20].

2.6.2. Generating dataset

A dataset comprising images of lips, mucous mem-
branes, and the oral cavity, with or without the disease,
is created. The images are resized, and their quantity
is augmented through various alterations, including
cropping, focus adjustment, rotation, brightness modi-
fication, and flipping.

The dataset, initially unbalanced with 44 cases not
presenting oral cancer and 87 cases that do, undergoes
class balancing. Classes are determined to identify the
presence or absence of disease, and the images are
segmented based on whether they depict oral cancer.

2.6.3. Creating a model

The proposed CNN model is established using "Mo-
bileNet" as the chosen architecture. Additionally, the
following attributes are employed:

1. Early Stopping: Configured with a patience
of “10” training cycles , this attribute monitors
a specified metric for any signs of improvement
before concluding [21].

2. Adam: This optimizer implements Adam’s al-
gorithm, a stochastic gradient descent method
based on the adaptive estimation of first- and
second-order moments [22].

3. Sequential: This attribute provides training
and inference functions for the model [23].

4. Conv2D: A 2D convolution layer that gener-
ates a convolution kernel rolled over input layers,
producing an output tensor [24].

5. Relu: Applied to activate the rectified linear
unit activation function [25].

6. MaxPooling2D: This attribute performs a max-
imum pooling operation for 2D spatial data [26].

7. Flatten: Used to flatten the input without af-
fecting the batch size [27].

8. Dense: This layer applies weights to all nodes
of the preceding layer [28].

9. Dropout: During training, this attribute ran-
domly sets input units to 0 with a specified fre-
quency at each step, helping to prevent overfit-
ting [29].

10. SoftMax: It converts a vector of values into a
probability distribution [25].

11. Compile: A method that accepts a metric ar-
gument and a list of metrics [30].

12. Categorical cross entropy: This attribute cal-
culates the cross-entropy loss between labels and
predictions [31].

13. Accuracy: It calculates the frequency with
which predictions match [32] the labels.

2.6.4. Training with K-fold

Model training is executed utilizing the following at-
tributes:

1. K-fold: The dataset is divided into K folds, with
each fold serving as the test set while the remain-
ing dataset is used as the training set [33,34].

2. Stratified Fold: This attribute ensures further
cross-validation by preserving the distribution of
classes in the dataset across both training and
validation splits [35].

3. To categorical: It converts a class vector (inte-
gers) into a binary class array [36].

4. Image Data Generator: This attribute fa-
cilitates the generation of training blocks and
performs data augmentation by increasing the
number of images through modifications such as
zooming, scaling, horizontal flipping, etc [37].

5. Fit: This function is used to train the model
for a fixed number of epochs (iterations on a
dataset) [38].
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6. Model Checkpoint: It serves as a callback to
save the Kera’s model or model weights at speci-
fied intervals [39].

7. Create model: This function is responsible for
creating and training a new model instance [40].

Similarly, another CNN is proposed to create the
model, utilizing "ResNet152V2," "DenseNet121," and
"EfficientNetB6" as the chosen architectures. Table 1
illustrates a comparison of the model’s performance
using these deep learning architectures:

Table 1. Comparison of deep learning architectures

ResNet152V2 Precision (%) Recall (%) F1 Score (%)
With oral cancer 90 93 92
No oral cancer 85 80 82

Accuracy 0.8855
AUC 0.863244514106583

DenseNet121 Precision (%) Recall (%) F1 Score (%)
With oral cancer 85 94 90
No oral cancer 86 68 76

Accuracy 0.8550
AUC 0. 812173458725183

Regarding the use of “Efficient Net B6”, a memory
problem arises at the beginning of fold 3 during model
training, preventing the completion of the process.

Similarly, although the results of the model using
the "ResNet152V2," "DenseNet121," and "MobileNet"
architectures on the same dataset are comparable,
the number of hyperparameters used in MobileNet is
smaller. Figures 5, 6, and 7 illustrate the number of
hyperparameters obtained for each architecture:

"ResNet152V2" used 76MM, as depicted in Figure
5.

Figure 5. ResNet152V2 hyperparameter number

"DenseNet121" used 24MM, as depicted in Figure
6.

Figure 6. DenseNet121 hyperparameter number

"MobileNet" used 24MM, as depicted in Figure 7.

Figure 7. MobileNet hyperparameter number

2.6.5. Ground truth

The model verification process is conducted using the
entire validation dataset, employing the following at-
tributes:

1. Evaluate: This function returns the loss value
and metric values of the model in test mode [38].

2. Predict: It generates output predictions for the
input samples [38].

3. Confusion matrix: Calculating the confusion
matrix is used to evaluate the accuracy of a clas-
sification [41].

4. Subplot: This attribute obtains the index posi-
tion in a grid with “n” rows and “n” columns [42].
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5. Heatmap: It is utilized to obtain a class activa-
tion heatmap for an image classification model
[43].

6. Set-ticklabels: This function sets the target
names for the confusion matrix.

7. Roc curve: This attribute calculates the ROC
[44].

8. Roc-auc-core: It calculates the ROC AUC from
the prediction scores [45].

2.6.6. Plotting AUC curves

Figure 8 depicts a plot of the true positive rate against
the false positive rate, illustrating the AUC through
lines. This visualization allows for the observation of
the relationship between these two variables.

Figure 8. Plotting AUC curves

It is confirmed that the proposed CNN model
demonstrates high performance in classifying the pres-
ence and absence of oral cancer.

3. Results and discussion

Figure 9 illustrates the plot of accuracy values against
the number of epochs, using lines to visualize the rela-
tionship between these two variables.

Figure 9. Plotting model accuracy per fold

When training the model, accuracy is obtained for
each fold:

In the first training, with fold 1, a “value accuracy”
of 0.84848 is achieved. In the second training, with
fold 3, a "value accuracy " of 0.81818 is achieved. In
the third training, with fold 3, a "value accuracy " of
0.90909 is achieved. In the fourth training, with fold
4, a "value accuracy " of 0.78125 is achieved.

It is observed that fold 1 attains a good "value
accuracy", fold 2 decreases the "value accuracy", fold
3 achieves the highest "value accuracy" with a value of
0.90909, and fold 4 decreases the " value accuracy".

During the model validation, the following metrics
are obtained for the model saved as “best mobilenet
fold 0.h5,” as illustrated in Table 2.

Table 2. Simple model performance metrics with fold 1

Precision (%) Recall (%) F1 Score (%)
With oral cancer 80 89 84
No oral cancer 94 89 91

AUC 0.8857105538140021

The “best mobilenet fold 1.h5” achieves the follow-
ing rankings, as depicted in Table 3.

Table 3. Simple model performance metrics with fold 2

Precision (%) Recall (%) F1 Score (%)
With oral cancer 74 91 82
No oral cancer 95 84 89

AUC 0.8740856844305119

The “best mobilenet fold 2.h5” achieves the follow-
ing rankings, as depicted in Table 4.

Table 4. Simple model performance metrics with fold 3

Precision (%) Recall (%) F1 Score (%)
With oral cancer 78 98 87
No oral cancer 99 86 92

AUC 0.9196708463949843

The “best mobilenet fold 3.h5” achieves the follow-
ing rankings, as depicted in Table 5.

Table 5. Simple model performance metrics with fold 4

Precision (%) Recall (%) F1 Score (%)
With oral cancer 79 61 69
No oral cancer 82 92 87

AUC 0.7665882967607105

It is concluded that the “best mobilenet fold
2.h5” model stands out as the optimal choice, ex-
hibiting the highest precision (78% and 99%), recall
(98% and 86%), F1 score (87% and 92%), and AUC
(0.9196708463949843) for both non-cancerous and can-
cerous cases, surpassing the performance of other mod-
els.

Comparatively, among the architectures
"ResNet152V2," "DenseNet121," and "MobileNet,"
it is demonstrated that the "MobileNet" architecture is
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optimal in terms of resource optimization, utilizing 20
million hyperparameters, whereas the "ResNet152V2"
and "DenseNet121" architectures use a significantly
greater number of hyperparameters.

In addition to the performance metrics of the
“ResNet152V2”, “DenseNet121” and “EfficientNetB6”
architectures evaluated, the model featured in [7]
demonstrated a precision of 84.3%, recall of 83.0%,
F1 score of 83.6%, and AUC of 0.8974. In contrast,
the model proposed in this study exhibited improve-
ments, achieving a precision of 88.5%, recall of 92.0%,
F1 score of 89.5%, and AUC of(0.9196708463949843).
Thus, a noticeable enhancement in overall performance
ranging between 2% and 9% is observed.

4. Conclusions

This study highlights the potential of AI in address-
ing oral health issues, particularly oral cancer, which
affects a significant portion of the population. The
research emphasizes the effectiveness of DL and con-
cludes that CNNs are a suitable DL algorithm for
processing images of the mucosa and the oral cavity.
CNNs take these images as input and assign weights
to specific elements to distinguish between them. The
choice of the MobileNet CNN is justified due to its abil-
ity to reduce model size and computation by replacing
standard convolution filters with deep, pointwise con-
volutions. The study utilizes the open-source Kaggle
platform and implements the model using the Python
programming language. The evaluation of various per-
formance metrics yields an accuracy of 0.90909, con-
firming that the proposed CNN model demonstrates
high diagnostic performance for oral cancer. Regarding
image quantity, the study specifies that using more
images enhances the proposed DL model’s results. Ad-
ditionally, evaluating different CNN architectures helps
to understand their performance, facilitating the de-
termination of the most optimal model. Ultimately,
this research asserts that the developed model is ready
for practical application, offering valuable support for
dental decision-making in real-time diagnostic scenar-
ios.

4.1. Future work

Continued efforts in collecting more images of lips,
mucosa, and the oral cavity depicting various oral con-
ditions, including oral cancer, will be a focal point for
future studies. Augmenting the image dataset and col-
laborating with public or private clinical institutions
for evaluation are believed to significantly improve the
results and facilitate the practical application of the
model. Recognizing the pivotal role of large datasets
in optimizing DL algorithms, the current results are
promising and serve as a first step to advance this line
of research. Furthermore, upcoming research endeavors

will aim to evaluate the performance of the proposed
CNN method in diagnosing a broader spectrum of oral
diseases.
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