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Abstract Resumen
This paper outlines the development of a module ca-
pable of constructing a map-building algorithm using
inertial odometry and visual features. It incorporates
an object recognition module that leverages local
features and unsupervised artificial neural networks
to identify non-dynamic elements in a room and as-
sign them positions. The map is modeled using a
neural network, where each neuron corresponds to
an absolute position in the room. Once the map is
constructed, capturing just a couple of images of the
environment is sufficient to estimate the robot’s lo-
cation. The experiments were conducted using both
simulation and a real robot. The Webots environment
with the virtual humanoid robot NAO was used for
the simulations. Concurrently, results were obtained
using a real NAO robot in a setting with various
objects. The results demonstrate notable precision in
localization within the two-dimensional maps, achiev-
ing an accuracy of ± (0.06, 0.1) m in simulations
contrasted with the natural environment, where the
best value achieved was ± (0.25, 0.16) m.

Este artículo presenta el desarrollo de un módulo
que puede desarrollar un algoritmo de construcción
de mapas mediante odometría inercial y caracterís-
ticas visuales. Utiliza un módulo de reconocimiento
de objetos basado en características locales y redes
neuronales artificiales no supervisadas para conocer
elementos no dinámicos en una habitación y asig-
narles una posición. El mapa está representado por
una red neuronal donde cada neurona corresponde
a una posición absoluta en la habitación. Una vez
construido el mapa, basta con capturar un par de imá-
genes del entorno para estimar la ubicación del robot.
Los experimentos se realizaron mediante simulación y
utilizando un robot real. Se utilizó el entorno Webots
con el robot humanoide virtual NAO para realizar las
simulaciones. Al mismo tiempo, se obtuvieron resul-
tados utilizando un robot NAO real en un escenario
con diversos objetos. Los resultados muestran una
buena precisión en la localización dentro de los ma-
pas bidimensionales de ±(0,06, 0,1)m en simulación
en contraste con el entorno natural; el mejor valor
obtenido fue ±(0,25, 0,16)m.
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1. Introduction

According to the International Federation of Robotics
(IFR) [1], a service robot is a robotic system that op-
erates wholly or partially autonomously to perform
valuable services for the well-being of humans and
equipment, excluding manufacturing operations. Ser-
vice robots are specifically designed for human environ-
ments, such as homes, hospitals, and restaurants, re-
quiring them to make complex decisions. These include
identifying, detecting, recognizing, and manipulating
various objects within their surroundings.

For a service robot to operate autonomously, it
must be equipped with a control system that enables
interaction with its environment to make the right
decisions and achieve specific objectives. A critical
component of this control system for service robots
involves learning about the environment in which they
will operate. Initially, the robot must familiarize itself
with the location and the non-dynamic elements it
will interact with. For instance, in some competitions,
participants are given a period to acquaint themselves
with the scenario interactions and perform the neces-
sary calibrations to complete the tasks.

The ability to see enhances its interaction with peo-
ple and the environment. For instance, in [2], vision
sensors are used for localization and mapping. In [3], a
stereovision system is developed to detect targets from
the generated depth map. Additionally, Scona et al. [4]
used a stereovision sensor to explore challenges such
as motion blur, lack of visual features, illumination
changes, and fast motion.

In environmental localization by mobile robots,
in [5] a vision system was implemented to develop
algorithms for simultaneous localization and mapping
(SLAM). In [6], an application was developed for topo-
logical mapping and navigation using visual SLAM.
Ovalle-Magallanes et al. [7] utilized visual information
to create an appearance-based localization system for
a humanoid robot. Lasguignes et al. [8] implemented
an ICP-based localization system using visual infor-
mation on the TALOS humanoid robot. Conversely,
Wozniak et al. [9] proposed an algorithm for visual
place recognition using images acquired by a humanoid
robot, with a neural network as the recognizer. In [10],
an augmented landmark vision-based ellipsoidal SLAM
was developed on an NAO humanoid robot for indoor
scenarios. Additionally, a method for efficient SLAM
using a forward-viewing monocular vision sensor was
implemented in [11].

In addition to RGB cameras, other sensors are
employed, such as in [12], where an IMU sensor was
utilized to locate a humanoid robot in the environment.
In [13], a combination of 2D LiDAR and odometry was
implemented to enable a robot to navigate and find
itself. Wen et al. [14] presented an EKF-SLAM using
camera and laser sensors for indoor localization and

mapping. In [15], a vision-based SLAM allows a mo-
bile robot to navigate unknown environments. In [16],
a SLAM system is proposed to estimate the robot’s
poses and build a 3D environment map. Furthermore,
features-based tracking from a stereo vision sensor was
combined to obtain a hybrid SLAM [17].

Meanwhile, Cheng, Sun, and Meng [18] utilized
feature points to develop a method that integrates
optical flow with ORB-SLAM to differentiate between
dynamic and static elements. In [19], Ganesan et al.
proposed a method to reduce the search space for
the RRT* algorithm in path-planning tasks. Feature
matching for map-building algorithms was explored
using the distance from a point cloud obtained from
a range finder sensor [20]. An environment map is
built using a sensor fusion of odometry, 2D laser, and
RGB-D [21]. A proposal where the environment is
represented by 3D polygons that enable a robot to
localize is presented in [22]. In contrast, a topological
navigation system based on symbolic representation
was proposed in [23] for a humanoid robot.

All the works mentioned above employ techniques
to enhance localization, mapping, or object searching
within a human environment, carried out by a mobile
robot. For this reason, the humanoid robot NAO [24]
is utilized as a platform for implementing localization
and mapping in this study.

The remainder of this paper is structured as follows:
Section 2 outlines the various methods and materials
used in this study. Subsequently, Section 2.5 presents
the implementation of the proposed system. The re-
sults obtained with both platforms are detailed in
Section 3. Finally, Section 4 discusses the conclusions
and directions for future research.

2. Materials and Methods

2.1. NAO robot

The NAO robot, as depicted in Figure 1 (a) is the
pivotal robotic platform chosen to implement the de-
veloped system. NAO, a medium-height autonomous
and programmable robot [24], is widely recognized as
one of the market’s most sophisticated and compre-
hensive robots. Over the years, five versions have been
introduced, each incorporating specific enhancements,
while the fundamental concept remains unaltered.

Figure 1 (b) presents a schematic of the robot, in-
dicating its dimensions, including height, width, and
arm length. The NAO robot is equipped with the em-
bedded software NAOqi, which operates on the robot
to provide autonomy. NAOqi is integrated into the
robot’s operating system, OpenNAO, an embedded
GNU/Linux distribution based on Gentoo. This sys-
tem includes numerous libraries and programs essential
for NAOqi. A notable feature is the capability to run
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copies of NAOqi on a computer, facilitating the use of
virtual robots.

Figure 1. NAO (a) Robot, and (b) dimensions in mm [25]

2.2. A-KAZE descriptor

The A-KAZE [26] method, depicted in Figure 2, is
divided into three main tasks: (1) construction of a
nonlinear scale space, (2) feature detection, and (3)
feature description. The construction of the nonlin-
ear scale space involves processing an input image
using the Fast Explicit Diffusion (FED) [25] numerical
method, applied with a pyramidal approach.

Figure 2. Overview of the A-KAZE algorithm

Initially, the scale space is discretized into a series
of O octaves and S sublevels, identified by discrete
indices (o and s, respectively). Subsequently, they are
mapped to their corresponding scale, σ, using Equation
(1).

σ(o, s) = 2
o+s

s (1)
The input image is convolved with a Gaussian

standard deviation σ 0 to reduce noise and potential
artifacts, considering both the input image and a con-
trast factor λ, which is automatically calculated by the
algorithm. Subsequently, 2D features of interest that
exhibit a normalized scale determinant of the Hessian
response are detected across the nonlinear scale space
for each filtered image. Normalization is performed
using a factor that accounts for the scale of each image
in the nonlinear scale space, as illustrated in Equation
(2).

Li
Hessiana = σ2

i,norm(Li
xxLi

yy − Li
xyLi

yx) (2)

The Scharr Concatenated Filter [27] calculates
second-order derivatives to approximate rotation in-
variance. Initially, the maximum response of the detec-
tor at a specific spatial location is obtained to estimate

the 2D position of the key point. This is achieved by
fitting a quadratic function to the maximum response
of the Hessian determinant within a 3x3 neighborhood.

Finally, the principal orientation of the key point
is calculated using the Modified-Local Difference Bi-
nary (M-LDB) descriptor [28]. This method utilizes
information about gradients and intensity from the
nonlinear scale space to generate a descriptor vector
of length 64.

In the case of the descriptor used, its primary ad-
vantage is its superior performance in obtaining visual
information when implementing the mapping system,
owing to its invariance to scale and rotation changes.
Additionally, it operates faster than other descriptors,
and the algorithm’s author provides the code. Among
the disadvantages, it is necessary to mention that pre-
cise tuning of the threshold used to identify character-
istic points is required, along with the adjustment of
the number of levels and sublevels within the nonlinear
scale space.

2.3. Growing Cell Structure

Growing Cell Structures (GCS) [29] are available in
supervised and unsupervised variants. The variant of
interest in this context is the unsupervised model,
which offers the significant advantage of automati-
cally determining an appropriate network structure
and size. This capability is facilitated through con-
trolled growth, which includes the periodic removal
of units. This model builds upon Kohonen’s [30] work
on self-organizing maps. The pseudocode for GCS is
presented in Algorithm 1 (see figure 3).

Figure 3. Growing cell structure [30]
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The Growing Cell Structure (GCS) algorithm of-
fers several key advantages. It can autonomously ad-
just the number of neurons, adding or removing them
as required. It operates as an unsupervised network,
enabling it to form associations of input vectors in-
dependently of external input. Its simplicity of imple-
mentation is also a notable feature. However, a noted
disadvantage is that the network may fail if the vectors
to be associated are very close to each other.

2.4. WEBOTS robotic simulator

Webots [31] is an open-source, multi-platform desk-
top application for robot simulation. For this reason,
Webots will be utilized to simulate the system and
facilitate its respective validation.

This software simulator enables testing applications
and algorithms for the NAO robot within a virtual
environment. Figure 4 illustrates the software environ-
ment, a virtual world that simulates NAO movements
while adhering to physical laws. This environment of-
fers a secure setting for testing behaviors before they
are implemented on a real robot.

Figure 4. Webots environment [32]

2.5. Bidimensional map construction

As mentioned in the Introduction section, autonomy
is achieved through a system of activity planning and
control, designed to ensure the fulfillment of its ob-
jectives. One key feature of these systems is spatial
navigation, which enables the calculation of a robot’s
pose (position and orientation) based on incremen-
tal, inertial, and visual measurements. This section
presents the concepts of odometry, and visual features
employed in the spatial navigation module. These tools
enable the robot to construct a two-dimensional map
and localize itself while navigating.

2.5.1. Odometry

Odometry facilitates estimating a mobile robot’s rel-
ative position within an environment during naviga-
tion, starting from its initial location. Additionally,
it records and tracks the robot’s movement within a
space to construct a two-dimensional map. The NAO
robot has functions that address several challenges,
including odometry. Algorithm 2 (see figure 5 displays

the pseudocode where functions from Aldebaran’s in-
ertial odometry [24] are utilized.

Figure 5. Pseudo code to store inertial odometry using
aldebaran functions [26]

In this implementation, the two-dimensional po-
sition of the robot is initialized with explicit values
obtained from the initialized pose values, which are
retrieved from the articulations’ magnetic rotary en-
coders (MRE). Each time the robot is activated, it
records an absolute position within the scenario world.

In constructing the two-dimensional map, the robot
first saves its initial position. Then, the robot is in-
structed to follow a predetermined closed-circuit path
within the room, advancing a specified distance while
walking. As it moves, the robot’s two-dimensional
position is recorded periodically. Subsequently, the
displacement and angle traversed by the robot are
calculated. The two-dimensional position between con-
secutive points is then computed to accurately reflect
the robot’s movement.

Thus, the general implementation of odometry can
be established as follows:

1. Capture the robot’s position relative to the world
before walking.

2. Detect when the robot starts walking.

3. Simultaneously begin collecting odometric data.

4. Process and accumulate odometric data.

5. Detect the completion of the robot’s walk. If the
walk is not completed, repeat steps 3 and 4.

6. Calculate the distance traveled by the robot.

7. Store the robot’s distance and position data to
construct the two-dimensional map.

Figure 6 presents the general flow diagram for gen-
erating the bidimensional map. In this diagram, the
algorithm initiates with the capture of an image. Subse-
quently, visual features are extracted from this image;
these features serve as inputs for the learning system,
namely the neural network. Following this, the robot
learns and records the spatial localization correspond-
ing to its position. If the designated path is completed,
the algorithm concludes. If not, the robot moves to
the next position and the algorithm continues until
the end of the path is reached.
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Figure 6. Dataflow diagram for the map reconstruction

2.6. Visual features

Visual elements are identified by analyzing and cata-
loging existing details in the environment, considering
the robot’s position when the image is captured. It is
generally considered that the most significant visual
elements for representing the environment are those
located on or near the walls. A two-dimensional map
of the room traversed by the robot can be constructed
using these visual elements and the estimated location
derived from odometry. For instance, figure 7 illustrates
a virtual room with various everyday objects typically
found in a home. These objects usually remain sta-
tionary. Therefore, the robot must navigate through
this room following a closed, preferably quadrangu-
lar, circuit, capture images, and record the estimated
position from where each image was taken.

Figure 7. Virtual room in Webots

Furthermore, the robot should focus on capturing
images of the nearest wall to its path. Figure 8 illus-
trates three captures made by the robot at different
points. During navigation, it will take a screenshot at

each step based on the number of images specified by
the user for the room. For instance, if 20 images are
required in a room where each wall is 4 meters long,
one image will be taken every 20 cm. In addition to the
number of captures and the dimensions of the room’s
walls, the tour frequency can also be determined. The
more circuits completed, the more detailed the con-
struction of the room map will be, and the easier it
will be to localize the robot.

Once the circuits are completed, the robot uses the
stored information to construct the two-dimensional
map. The captured images will contain objects from
which specific details must be extracted. The object
recognition module [32] processes the images to ob-
tain descriptors, which are then learned and linked
to the robot’s pose during capture. This information
is integrated into a two-dimensional representation,
forming the map of the room. Before initiating any
room tour, the robot must identify the nearest wall
to determine where it will focus its image captures
by simply turning its head toward the visible wall.
This wall detection is achieved by visually estimating
distances. Before navigation, the robot should be po-
sitioned parallel to the selected wall and placed in a
corner of the room. It then captures an image, which
is subsequently analyzed by dividing it into two parts.

Figure 8. Images acquired by the NAO robot in a simu-
lated room

For instance, Figure 9 displays three different cap-
tures of a room taken from various robot positions.
In image 9(a), the nearest wall is to the left, while
in images 9(b) and 9(c), it is on the right. For each
image, interest points on each side are identified using
the A-KAZE algorithm [26]. The image with the most
salient points indicates the location of the nearest wall,
assuming the room is free of obstacles.

Figure 9. Images taken by the NAO robot before

Figure 10 displays the evaluation results for each
image, with salient points indicated by small colored
circles. In image 10(a), the right side contains the
most salient points, numbering 108 compared to 36
on the left; in 10(b), the left side predominates with
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128 points versus 50 on the right; and in 10(c), the
left side again leads with 119 points compared to 53
on the right. Based on these observations, the robot
then turns towards the side with more salient points
to continue its exploration of the room.

Figure 10. Wall detection using descriptors

2.7. Algorithm for the map construction

The construction of the two-dimensional map proceeds
as follows: Initially, the robot performs a closed-loop
circuit around a square room, capturing and recording
images along with their respective poses. Knowledge
of the wall dimensions, the step size during movement,
and the number of iterations is essential. The robot
enhances its understanding of the room with each ad-
ditional circuit completed. At the commencement of
Algorithm 3 (see figure 11), the robot executes an ini-
tial capture to detect the nearest wall and determine
the angle for its subsequent turn.

Before commencing its movement, the robot
records its current pose through odometry as the global
reference point for the room. Subsequently, the dis-
tance traveled is logged, indicating both the length of
the robot’s journey and the total distance it needs to
navigate within the room. This measurement is contin-
ually monitored by a work cycle, which persists until
the traveled distance equals the combined length of
the room’s four walls.

Figure 11. Navigation module. Execution of a closed lap

After completing the circuit and storing the room
database, Algorithm 4 (see figure 12), is initiated to
learn from a new database that includes capture and
pose information. All interest points are extracted,
histograms are constructed, and a neural network

is trained using the Growing Cell Structures (GCS)
method [32].

Figure 12. Navigation module. Construction of two-
dimensional map

Algorithm 5 (see figure 13), is used to evaluate
the map. This module processes the images, extract-
ing salient points and constructing histograms. These
histograms are then used to assess the trained neural
network. This process helps identify the corresponding
neurons. Once the classes are determined, the associ-
ated poses are retrieved. The two-dimensional positions
on the map are then calculated and returned.

Figure 13. Navigation module. Using the two-dimensional
map

The algorithm operates within certain constraints,
including knowing the room’s dimensions to calculate
the total distance the robot will traverse around it. Ad-
ditionally, the environment must be free of obstacles,
as this work does not incorporate obstacle-avoidance
strategies.

Finally, if any elements within the room have been
moved, the robot must reconstruct its navigation map
to reflect these changes.

3. Results and discussion

The experiments described in this section are divided
into two parts: (1) constructing a two-dimensional map
and (2) localization within the map. These experiments
have been conducted using both virtual and real NAO
robots.

3.1. Virtual environment

3.1.1. Map construction

The simulated room depicted in Figure 7, measuring
6×6 meters, was created using Webots. This room was
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furnished with various objects, such as chairs, tables,
and portraits. A virtual NAO robot was employed
to construct the two-dimensional map of the room.
The robot initiated its journey from the lower left cor-
ner of the room, navigating in a quadrangular closed
circuit. The robot turned its head towards the walls
throughout its journey to capture images. The walls
were numbered from 1 to 4 in a counterclockwise di-
rection to illustrate the results of constructing the
two-dimensional map.

The robot completed two counterclockwise circuits
around the room, capturing images and recording their
spatial relationships. The number of images taken per
wall is detailed in Table 1. The term ’lap’ refers to
the number of circuits the robot completes. ’Images’
denotes the total number of images saved during each
lap. ’Wall1’, ’Wall2’, ’Wall3’, and ’Wall4’ indicate the
number of images stored for each wall. In total, 164
images and their associated poses, which were used to
construct the two-dimensional map, were recorded.

Table 1. Main parameters of the experiments: Construc-
tion of the two-dimensional map

Lap Images Wall 1 Wall 2 Wall 3 Wall 4
1 89 20 21 31 17
2 75 18 20 24 13

The parameters corresponding to object recogni-
tion are detailed in Table 2. As noted, three iterations
of two-dimensional map construction were conducted
using 100, 200, and 300 neurons, respectively. The
objective was to assess the module’s effectiveness in
constructing a map accurately reflecting the robot’s
observations within the room.

Table 2. Parameters of the object recognition module for
constructing the two-dimensional map

Experiment Training Neurons Epochs Time (sec)
1 164 100 100 4,063
2 164 200 200 14,287
3 164 300 300 33,347

After training, two-dimensional maps containing
72, 111, and 132 poses were generated. The points
marked on each map in Figure 14 represent a pose
associated with a neuron. It is evident that as the
number of neurons increases, the distribution of poses
becomes more refined. It is important to note that the
poses were homogenized across the coordinates and
were kept constant during the tour to ensure a precise
distribution is displayed.

The distribution in the map constructed with 100
neurons is suboptimal, as it includes some poses within
areas where the robot has not traveled, along with clus-
tering of poses in certain sections. The distribution is
significantly improved in the map constructed with 200

neurons, although some pose stacking is still evident.
The map with 300 neurons exhibits the best distribu-
tion, covering more areas comprehensively. While a
few erroneous poses are still present, they are minimal.

Thanks to the two-dimensional map, the robot can
identify the locations of walls, allowing it to avoid
them while executing its tasks.

Figure 14. Distribution of neurons by poses in the room
of the experiments: (a) 1, (b) 2, and (c) 3

3.1.2. Map location

The purpose of the two-dimensional map is to enable
the robot to return to the global position 0 on the
map once it has completed its tasks. With the con-
structed map, the robot can determine its location
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within the room using one or two images of the nearest
walls. Four experiments were conducted to validate
this functionality.

Table 3 lists the parameters, which include the
experiment number, the two-dimensional map con-
structed in the previous section (1, 2, and 3), and the
actual position to be calculated (x, y) in meters.

The two-dimensional map construction is evalu-
ated as follows: the virtual robot captures two images
from different perspectives at each of the four positions
nearest to the walls under assessment. Examples of
these captures by the robot are illustrated in Figure
15. At each position, two images of the closest walls
are captured.

The first two upper images correspond to the po-
sition (0,0), while the subsequent two correspond to
the position (4,4) within the room. The results are
presented in Table 3, which details five evaluations
with two images for each experiment. The module
records the individual poses captured in each column
for the four experiments, featuring a pair of images
per evaluation.

Table 3. Results of the poses evaluations and locations on
the map

N° Map (x,y) m 1 2 3 4 5
1 1 (3.5,0.5) (3.7,1.7) (3.6,1.6) (3.7,1.7) (3.8,1.8) (3.3,1.7)
2 1 (0.0) (0.1,0.2) (0.2.0.2) (0.3.0.1) (0.3,0.0) (0.3.0.2)
3 2 (0.5,3.5) (0.0,2.0) (0.0,2.0) (0.2,2.2) (0.0,2.0) (0.2,2.2)
4 3 (4,4) (4.0,3.8) (3.9,3.9) (4,4) (3.9,3.9) (3.9,3.9)

Figure 15. Examples of captures made by the virtual
NAO robot

3.2. Real Scenario

3.2.1. Map construction

The two-dimensional map was constructed in a 4×3
meter room, within which the robot developed a 3×3
meter map. The room contains various elements, in-
cluding posters with diverse information. Figure 16
displays the room’s four walls, illustrating the elements

used for learning. Additionally, a 30 cm platform is po-
sitioned at the center of the room, as shown in Figure
17. This platform holds 20 objects distributed along
the edges, enhancing visibility for the robot and en-
suring the objects remain within the work area of the
handlers for easy retrieval.

This evaluation completed three circuits to con-
struct a more accurate map. The robot initiated its
route from the room’s global coordinate (0,0), posi-
tioned in the right corner of wall number one.

During the tours, the robot turns its head toward
the wall to capture images while advancing and main-
taining its relative position (see Figure 18).

Figure 16. The walls of the real scenario for building the
map

Figure 17. Platform with objects placed in the center of
the room

Figure 18. The robot makes its path by heading towards
the wall to capture images

Table 4 details the images captured during each
circuit along the walls. This table specifies the number
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of circuits completed, the total images taken, and the
images captured corresponding to each wall. A total
of sixty-eight images and poses used to construct the
two-dimensional map were recorded.

Like the virtual scenario, the captured images are
input to the object recognition module, responsible for
feature learning and generating the room map.

Table 4. Main parameters of the experiments: Construc-
tion of the two-dimensional map

Lap Images Wall 1 Wall 2 Wall 3 Wall 4
1 25 7 7 5 6
2 26 5 8 5 8
3 17 5 5 4 3

Table 5 presents the parameters used to generate
the room map, including the number of experiments
conducted, the images used for training, the number
of neurons, and the epochs involved.

Table 5. Parameters for constructing the map

Experiment Training Neurons Times
1 68 400 100
2 68 500 200

After training, the two-dimensional maps contained
27 and 36 poses, respectively. Figure 19 displays these
maps, where blue points indicate the poses at which
the robot captured images. Figure 19(a) illustrates the
ideal map, showing the target poses for image cap-
ture during the experiments. The map constructed for
experiment 1 corresponds to Figure 19(b), while the
map for the second experiment is depicted in Figure
19(c). These maps reflect the distribution of neurons
associated with each pose. It is noted that increas-
ing the number of neurons from 400 to 500 slightly
improves the distribution. However, the size of the
constructed map was reduced from 3 × 3 meters to
1.5 × 1.5 meters.

From the analysis above, it can be inferred that
the reduction in map size resulted from numerous false
positives and the inter-association of poses, which led
to their consolidation.

Figure 19. Distribution of neurons by poses in the room

3.2.2. Map localization

The task of localization on the two-dimensional map
serves several purposes. One key objective is for the
robot to return to the starting point to deliver an ob-
ject as requested by the user. Additionally, the robot
uses the map to locate room walls, which helps avoid
them during search tasks for items.

Therefore, with the constructed map, the robot can
determine its location within the room using one or
two images of the nearest walls. This capability was
assessed through ten experiments that were conducted.

Table 6 lists the experiment numbers and the cor-
responding positions to be calculated (x, y) in meters.
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Table 6. Main parameters of experiments for the map
location

N° 1 2 3 4 5 6 7 8 9 10
(x,y)m (0,0) (0,1) (0,2) (0,3) (1,0) (2,0) (3,0) (3,3) (1.5,2) (2,1.5)

The accuracy of the robot’s location on the two-
dimensional map is determined using two images cap-
tured from the closest potential positions of the wall
adjacent to that point.

The results are presented in Table 7, where the
10 locations are associated with two poses derived
from evaluating the two images taken from each po-
sition. Due to inaccuracies in constructing the two-
dimensional map, the obtained poses do not closely

match the actual positions.
The highest precision was achieved with pose num-

ber (1), showing an accuracy of ± (0.25, 0.16) close
to the expected pose. The next best precision was ob-
tained with pose number (9), showing an accuracy of ±
(0.34, 0.62). The least accurate poses were (2) and (8),
with precisions of ± (1.50, 0.50) and ± (1.75, 2.00),
respectively. Although the constructed map was inac-
curate, the evaluation yields favorable results given the
trained map. Figure 20 provides a graphical represen-
tation of the 10 locations determined using the module
on the previously trained two-dimensional map. It is
observed that most poses are very close to the trained
positions, except for poses 2, 7, and 8, which were
significantly misaligned.

Table 7. Results of the evaluations of poses for each experiment

N° 1 2 3 4 5 6 7 8 9 10
1 (0,0.16) (1.50,1.50) (0.75,0) (1.00,0) (0,0.80) (0,1.0) (0.25,0) (1.25,0) (1.06,1.75) (1.50,0.80)
2 (0.25,0) (1.50,0.60) (1.25,0) (0,0.80) (0.25,0) (0.25,0) (0.66,0) (0,1.00) (1.25,1.00) (1.25,1.00)

Figure 20. Plot with the 10 locations determined on the
trained map

4. Conclusions

This study presents the development of an algorithm
for constructing two-dimensional maps using inertial
odometry and visual elements. The two-dimensional
map is created utilizing an object recognition mod-
ule based on local features and unsupervised artificial
neural networks. This module is employed to learn
the room’s layout and associate a pose with each neu-
ron in the network, which is trained to represent the
two-dimensional map.

Experiments were conducted using (1) a virtual
NAO robot and (2) a real NAO robot within an au-
thentic scenario. The results are promising, as it was
possible to construct a two-dimensional map of the
room and accurately locate the mobile robot with

a precision of up to ± (0.06, 0.1) in simulation and
±(0.25, 0.16) in the natural environment. These results
can be further improved by enhancing the quality of
the images.

1. The approach to generating maps from visual
information has several limitations, including the
following: The NAO robot’s cameras are not op-
timal for capturing high-quality images, leading
to errors in both the learning and recognition
phases.

2. The environment must be structured to include
sufficient visual references on the room’s walls
to improve the robot’s localization accuracy.

3. This implementation does not account for dy-
namic elements; therefore, the scene only con-
tains the robot, the table, and the surrounding
objects.

4. The robot’s path must be straight, necessitat-
ing a clear path free of objects to allow proper
positioning relative to the wall and its visual
markers.

5. The approach relies heavily on visual information,
so the absence of such information would cause
confusion and significantly hinder the robot’s
ability to navigate around the room.

4.1. Future work

1. Enhanced Sensor Fusion: Future work will fo-
cus on improving data integration from inertial
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odometry and visual elements. This approach
aims to reduce reliance on solely visual features,
thereby enhancing the robustness and accuracy
of the system.

2. Evaluation of Neural Network Architec-
tures: Various neural network architectures will
be evaluated to determine the most suitable for
the construction map task. The architecture that
demonstrates the best performance will be se-
lected for further development and implementa-
tion.

3. Testing Advanced Feature Point Detectors:
To enhance system performance, state-of-the-art
feature point detectors will be tested. These de-
tectors are expected to offer significant improve-
ments in the detection and processing of feature
points, contributing to overall system efficiency.
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