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Abstract Resumen
This study proposes an IoT architecture for moni-
toring vehicle pollutant gas emissions in response to
increasing concerns about air pollution and global
warming. The architecture is based on a node
equipped with DHT22, MQ9, and MQ135 sensors
to capture temperature, humidity, and gas emissions.
This node effectively communicates through the LTE
network to send the data to the ThingSpeak platform.
An analysis of CO2, CO, and CH4 pollution levels is
conducted using the collected data. This data is vali-
dated through the technical review of a test vehicle.
Subsequently, an Artificial Neural Network (ANN) is
trained using a specific database of CO2 emissions
from cars in Canada. As a result, a high coefficient
of determination (R2) of 99.2 % is achieved, along
with low values of Root Mean Square Error (RMSE)
and Mean Squared Error (MSE), indicating that the
model makes accurate predictions and fits well with
the training data. The ANN aims to predict CO2
emissions and verify CO2 data from the IoT network.
The architecture demonstrates its capability for real-
time monitoring and its potential to contribute to
pollution reduction.

Este estudio propone una arquitectura IoT para el
monitoreo de emisiones de gases contaminantes en ve-
hículos, en respuesta a la creciente preocupación por
la contaminación del aire y el calentamiento global. La
arquitectura se basa en un nodo equipado con sensores
DHT22, MQ9 y MQ135 para capturar la temperatura,
humedad y emisiones de gases, mismo que se comu-
nica de manera efectiva a través de la red LTE para
enviar los datos a la plataforma ThingSpeak. Se lleva
a cabo un análisis de los niveles de contaminación
de CO2, CO y CH4 mediante los datos recopilados.
Estos datos se validan mediante la revisión técnica
de un vehículo de prueba. Posterior, se entrena una
red neuronal artificial (ANN) utilizando una base de
datos específica de emisiones de CO2 de vehículos en
Canadá, como resultado se obtiene un R2 alto de 99,2
% y los valores de RMSE y MSE bajos, esto indican
que el modelo está haciendo predicciones precisas y
se ajusta bien a los datos de entrenamiento. La ANN
tiene como objetivo predecir las emisiones de CO2 y
verificar los datos de CO2 provenientes de la red IoT.
La arquitectura demuestra su capacidad para el mo-
nitoreo en tiempo real y su potencial para contribuir
a la reducción de la contaminación.
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1. Introduction

Accelerated urbanization and increased demand for
transportation have exacerbated the environmental
issues associated with road transport [1]. Despite a
temporary reduction in emissions during 2020 due to
the COVID-19 pandemic, global warming continues,
accompanied by rising atmospheric pollution [2]. The
challenges posed by climate change are global, tran-
scending national borders. Emissions of greenhouse
gases such as methane (CH4), hydrofluorocarbons
(HFCs), and carbon dioxide (CO2) disrupt the bal-
ance between the Earth and its atmosphere. Specif-
ically, CO2 emissions, releasing approximately eight
billion tons annually from the combustion of fossil
fuels in transportation, heating, and energy produc-
tion, have become a critical factor in worsening global
warming [3]. These emissions primarily originate from
industrial and vehicular sources, with passenger cars
accounting for 75% of the carbon dioxide emissions [4].

Heavy vehicles, including buses and trucks are re-
sponsible for approximately 25% of road emissions.
This contribution could increase unless appropriate
measures are implemented. Despite stricter regula-
tions to enhance fuel efficiency and reduce greenhouse
gas emissions, the number of vehicles on the road has
significantly increased. This surge has led to a marked
rise in the kilometers these vehicles travel, further ex-
acerbating their impact on atmospheric pollution [5].

Monitoring pollution in the vehicular sector is cru-
cial for several reasons [6, 7]. It provides vital data on
the sources and intensity of air pollution across public,
private, and freight transportation environments. This
information is essential for developing policies and
strategies to reduce exposure and enhance air quality.
Furthermore, such surveillance helps identify practi-
cal approaches to address this problem, including the
implementation of cleaner fuels and the adoption of
advanced technologies. These measures play a critical
role in fostering sustainable solutions and promoting
healthier urban environments for travelers and the
population in general.

The challenge in vehicular transportation arises
from the lack of precise and reliable air quality data.
This deficiency drives the need to design and test a mo-
bile measurement system capable of addressing these
gaps [8]. The capture, processing, and analysis of pol-
lution data in urban transportation are crucial. These
processes improve the understanding of air pollution
sources and subsequently encourage the development
of targeted policies and interventions to address this
issue.

Below, we review various IoT proposals for emis-
sion monitoring. Senthilkumar et al. [9] describe an
integrated system where sensors collect air quality data
and transmit it to fog nodes. Moses [10] proposes a
cloud-based scheme to monitor air quality using sen-

sors that measure pollutant levels such as NOx, CO,
O3, PM10, PM2.5, and SO2, along with environmen-
tal data like humidity and temperature. The collected
data is updated in the cloud via a LoRa Gateway
infrastructure and LoRa nodes. Time series analysis,
support vector regression models, and multilayer per-
ceptron neural networks are used to predict pollutant
concentrations. Behal and Singh [11] use the ANFIS
method to predict air quality based on pollutant levels
and a modified air quality index (m-AQI). A support
vector regression model is employed to forecast values,
which involves determining a best-fit line that is robust
to outliers.

Shetty et al. [12] apply IoT methods to monitor
vehicular emission rates and use real-world data on a
global scale to forecast carbon monoxide levels. Wei
et al. [13] utilize vehicular monitoring to provide own-
ers with details about current pollution levels at their
location and their vehicles emission rates, using ma-
chine learning techniques to predict pollution based
on historical and current data collected by sensors.
Mumtaz et al. [14] offer a solution that combines ad-
vanced IoT sensors with machine learning capabilities
to monitor and predict indoor air quality, thus enabling
the measurement of various pollutants. In Mohamed’s
study [15], an IoT sensor network is employed to de-
tect eight types of pollutants through machine learning
techniques, achieving a high accuracy rate of 99.1% in
classifying indoor air quality.

Therefore, in a world increasingly aware of the im-
portance of sustainability and reducing environmental
pollution, monitoring vehicular emissions has become
a critical challenge. The rapid urbanization and ex-
pansion of the vehicle fleet have intensified the urgent
need to control and mitigate air pollution to preserve
environmental quality and safeguard public health. In
this context, the Internet of Things (IoT) emerges as
a powerful tool that enables real-time data collection
and analysis, thus allowing the efficient and effective
monitoring and management of vehicular emissions.

This project focuses on developing an IoT archi-
tecture for monitoring vehicular emissions of polluting
gases, supported by machine learning techniques. This
architecture will enable the real-time collection of accu-
rate data on emissions from operating vehicles, along
with subsequent analysis and validation of this data
using machine learning algorithms. The implementa-
tion of this proposal is critically important for several
reasons.

• Emission Control: Real-time monitoring of
vehicle emissions enables identifying and proac-
tively managing pollution sources, which is cru-
cial for achieving air quality objectives and re-
ducing environmental impact.

• Technology and Sustainability: The combina-
tion of IoT and Machine Learning constitutes an
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advanced technological approach that enhances
sustainability and illustrates how innovation can
drive positive change in society.

2. Materials and Methods

The proposed architecture and its constituent elements
for constructing the sensor node for gas acquisition
in a test vehicle, specifically a 2012 Kia Sportage, are
presented in the following section.

2.1. Proposed IoT Architecture

In this Internet of Things (IoT) architecture (see Fig-
ure 1), a complete system is designed to monitor vehicle
emissions of polluting gases, referencing the proposals
in [16, 17]. The architecture comprises several layers
that work together to collect, store, and validate emis-
sion data.

Figure 1. IoT Architecture for Pollutant Gas Monitoring.

Below, the architecture is described considering its
layers and functionality:

• Perception Layer: In the perception layer, a
node equipped with a DHT22 temperature sen-
sor along with MQ-135 and MQ-9 gas sensors,
is utilized for gas detection. This node captures
real-time temperature, humidity, and air pollu-
tant concentration data.

• Network Layer: The network or communica-
tion layer is essential for transmitting the data
captured by the sensor node. The LTE network
has been selected as the communication medium,
offering reliable connectivity, wide coverage for
the sensor node, and potential network scalabil-
ity.

• Application Layer: In the application layer,
the IoT platform ThingSpeak has been inte-
grated to store and manage the data collected by
the sensors. ThingSpeak provides a user-friendly
interface and enables secure data storage via
the HTTP protocol, thus facilitating subsequent
access and analysis.

• Data Analysis: Once the data has been up-
loaded to ThingSpeak, a more detailed analysis
is conducted to verify the distribution of car-
bon dioxide (CO2), carbon monoxide (CO), and
methane (CH4) emission data. Colab, a Python
programming collaboration platform, is utilized
for this purpose.

• Data Validation: A comprehensive verification
process is conducted to ensure the accuracy of
the data captured by the sensors, including tests
based on the technical inspection of a test vehicle.
Additionally, regression analysis is performed us-
ing a Canadian-origin CO2 emissions database
as a reference point to verify the data received
from the IoT platform. This procedure facilitates
comparison, validation, and prediction.

2.2. Design of the Sensor Node

The sensor node design (Figure 2) incorporates the
LILYGO® TTGO T-Call V1.4 controller, which fea-
tures a variety of essential functionalities. This device
provides LTE network connectivity via a SIM800L
module and leverages the ESP32 for wireless capa-
bilities, including Wi-Fi and Bluetooth. Additionally,
the sensor node includes a built-in GPS positioning
system, enabling precise geolocation of measurements.
The sensors, carefully chosen for their accuracy, in-
clude the DHT22 sensor for measuring environmental
temperature and humidity. Meanwhile, the MQ135 and
MQ9 sensors detect concentrations of CO, CO2, and
methane (CH4). It should be noted that the DHT22
sensor is connected to a digital port on the controller,
whereas the MQ135 and MQ9 sensors are connected
to analog ports, offering a versatile interface for data
acquisition. This comprehensive configuration allows
for precise measurement and collection of critical data
necessary for monitoring vehicular pollutant gas emis-
sions.

The DHT22 sensor operates within a voltage range
of 3.3–5 VDC and can measure relative air humidity
from 0 to 99% RH with an accuracy of ±2% (at 25°C)
and a resolution of up to 0.1%. It measures tempera-
ture within a range of -40°C to 80°C, with an accuracy
of ±0.5°C and a resolution of 0.1°C. The sensor re-
freshes at a rate of 1 Hz (reporting every 1 second)
and employs the Wire protocol for its operation. Its
functionality is supported by the DHT.h library.

The MQ-135 sensor operates through a specific
detection mechanism involving gas interactions, which
result in variations in its electrical resistance. Although
the sensor does not inherently discriminate between
gases, it can be calibrated and configured to detect spe-
cific gases based on their unique response patterns. By
precisely adjusting the sensor parameters and apply-
ing advanced signal processing techniques, it becomes
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possible to distinguish between various gases and their
concentrations, thereby enabling effective differentia-
tion between gases such as CO and CO2. According
to the technical information provided by the sensor,
the load resistance is 20.1 kΩ, and the resistance in
clean air conditions is 10 kΩ. Considering this data,
Figure 3 illustrates the sensor calibration curve along
with the model equation, where Ro is defined as the
constant representing the sensor resistance in response
to a concentration of 0.4 mg/L, and Rs denotes the
sensor resistance in another context.

Figure 2. IoT Sensor Node.

Figure 3. Calibration Curve of the MQ-135 Sensor.

The MQ-9 sensor was used to determine methane
concentration (CH4). The sensor’s analog output data
is transmitted to the controller’s analog input. The
conversion of this data by the analog-to-digital con-
verter (ADC) occurs within a range of 0 to 3.3 V. The
characteristics and specifications, such as load and re-
sistance in fresh air, are similar to those of the MQ-135,
as both sensors originate from the same manufacturer
and share identical values. Consequently, the same
configurations are utilized.

2.3. Implementation of the Sensor Node into
the Vehicle

The IoT sensor node is positioned following the indica-
tions provided in Figure 4, allowing for strategic place-
ment of the sensors directly at the vehicle’s exhaust

pipe outlet. The controller in contrast, is securely in-
stalled inside the car, establishing a direct connection
with the onboard computer. This connection facili-
tates real-time visualization of the data captured by
the sensor. Moreover, the sensor is connected to the
ThingSpeak platform via LTE technology, utilizing
the HTTP protocol for efficient data transmission and
storage. This comprehensive design allows for effective
monitoring of vehicle pollutant gas emissions, thereby
providing valuable real-time information. For power
supply, the device is connected to the vehicle’s battery.

In Figure 5, the physical sensor node installed in
the vehicle is depicted for sample collection.

In Figure 6, the placement of sensors on the vehi-
cle’s exhaust pipe is visible.

It is essential to highlight that GPS is used to vi-
sualize the precise position of the vehicle and obtain a
detailed record of its path.

Figure 4. Arrangement of the IoT Sensor Node in the
Vehicle.

Figure 5. IoT Sensor Node Installed.

Figure 6. Sensors for Data Collection.
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3. Results and Discussion

Firstly, the results obtained from the 50 samples col-
lected from the exhaust pipe with the engine idling
and undergoing specific changes in revolutions, are
presented to illustrate the variability in data collection.
These samples reveal the levels of pollutants, specifi-
cally CH4 (methane), CO2, and CO. The data from
sensors, expressed in parts per million (ppm), provide
detailed insight into the emissions.

Upon analysis, it is observed that the concentration
of CH4 (see Figure 7) varies approximately between
45 and 65 ppm, reflecting the data distribution. Addi-
tionally, Figure 8 highlights that CO oscillations range
from 26,000 to 38,000 ppm, while CO2 levels fluctuate
between 121,000 and 140,000 ppm.

Figure 7. Graph of the data for CH4.

Figure 8. Graph of the data for CO and CO2.

It is rworth noting that these values fall within the
specified ranges, as mentioned in the study [17]. These
findings emphasize the importance of closely monitor-
ing vehicle emissions to gain a clear understanding of
engine pollutant variability. Importantly, the samples
are collected approximately every 3 to 4 minutes, re-
flecting the time required for the controller to process
and upload the data to the ThingSpeak platform.

The graphical representation of temperature and
humidity data was not performed because these pa-
rameters do not vary abruptly according to the sensor
position in the exhaust pipe. During measurements,

the temperature displayed minimal oscillations, con-
sistently ranging from approximately 30 to 37°C. Si-
multaneously, humidity exhibited a similar stability,
fluctuating between 80% and 99%.

The data capture validation was performed through
a comprehensive technical inspection of a 2012 Kia
Sportage SUV used as the test vehicle. This evalua-
tion yielded CO2 concentrations ranging from 12% to
14%, with the engine idling and CO concentrations
ranging from 2.6% to 3.8%. According to Segura [18],
this information can be utilized to estimate emissions
in ppm, assigning CO2 an estimated maximum level
of 140,000 ppm and CO a maximum of 38,000 ppm.

This information supports the reliability of the col-
lected data, as the vehicle technical inspection as the
results from the vehicle technical inspection are consis-
tent with the measurements obtained by the sensors.
The precise calibration of the sensors for capturing
these gases improves the accuracy of the estimations,
thereby confirming that the concentration of CH4 is
also accurate and reliable.

To evaluate the vehicle’s pollution level, focusing
on CO2 as a crucial reference variable due to its signif-
icant contribution to vehicle emissions, a conversion is
performed to calculate the units in grams of pollution
per kilometer traveled (g/km). The importance of this
data is underscored by its verification against the vehi-
cle’s technical specifications, which specify a pollution
level of 158 g/km of CO2 in urban environments.

Therefore, to calculate the amount of carbon diox-
ide (CO2) released per kilometer traveled, if the vehicle
exhibits a CO2 concentration of 14%, this percentage
indicates that 14% of the gas volume in the vehicle’s
exhaust pipe consists of CO2. The remaining 86% com-
prises other types of exhaust gases, such as nitrogen,
oxygen, and unburned hydrocarbons (HC), among oth-
ers.

To accurately calculate the amount of CO2 emit-
ted, several factors must be considered, including the
vehicle’s efficiency, the volume of fuel consumed, and
the amount of CO2 generated per liter of fuel burned.

Vehicle efficiency: This parameter is derived from
the vehicle’s technical specifications, which indicate a
fuel consumption rate of 5.7 liters per 100 kilometers.

Amount of CO2 per liter of fuel: The amount of
CO2 produced by burning one liter of gasoline varies
depending on the fuel’s exact composition. In this case,
it amounts to approximately 2.8 kg of CO2 per liter of
gasoline. Using these parameters, we then apply the
following equation (1) to calculate the CO2 emissions
in g/km.

CO2
(

g
km

)
= Cl/km ∗ CO2kg/l ∗ 100g/kg

CO2
(

g
km

)
= 0.057l/km ∗ 2, 8 kg

l
∗ 100 g

kg

= 159,6 g/km
(1)
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This calculation provides a close approximation to
the vehicle’s technical specifications, which estimate
CO2 emissions at 158 g/km.

With this established conversion data, an Artifi-
cial Neural Network (ANN) model is developed to
predict potential emissions of pollutant gases in the
automotive fleet. For this purpose, a dataset from Kag-
gle [19] that contains information on vehicle pollutant
gas emissions in Canada is utilized. This dataset was
selected because it includes information about the ve-
hicle used in our sensor tests. Consequently, a learning
model is tailored to our specific scenario, enabling the
prediction of CO2 pollution levels.

The database includes essential parameters such as
make, model, vehicle class, engine size, number of cylin-
ders, transmission type, fuel type, fuel consumption
in the city (L/100 km), fuel consumption on highways
(L/100 km), as well as CO2 emissions measured in
grams per kilometer (g/km). During the analysis, cor-
relations between these parameters and CO2 emissions
are evaluated to identify the variables that have the
most significant relationships. Variables demonstrat-
ing notable correlations are selected for training the
Artificial Neural Network (ANN) model, thereby focus-
ing the model on the features that most significantly
influence CO2 emissions and improving its predictive
capability.

This correlation is illustrated in Figure 9, which
shows that the variables engine size, number of cylin-
ders, fuel consumption in the city, and fuel consump-
tion on highways exert the most significant influence
on CO2 emissions.

Figure 9. Correlation of Variables Influencing CO2 Emis-
sions.

Progress is made in developing a machine learn-
ing model using an Artificial Neural Network (ANN)
based on the information obtained from the correlation
analysis. This model is configured using the Tensor-
Flow library in Python, as outlined in the following
structure (see Figure 10).

Figure 10. Structure of the ANN.

The model structure is defined as sequential, indi-
cating a neural network architecture where the layers
are arranged in sequence. It comprises four densely
connected layers (Dense), labeled dense1, dense2, and
dense3. The first layer contains 64 neurons, the second
32, the third 16, and the output layer includes a single
neuron. Each layer utilizes the ’relu’ (Rectified Linear
Unit) activation function, except for the output layer,
which employs the ’linear’ activation function suitable
for CO2 emissions. The parameters are automatically
calculated and detailed in Figure 10, which displays
the number of trainable parameters and the total sum
of parameters, amounting to 9,089. These parameters
represent the weights and biases of the neural net-
work that are adjusted during the training process to
optimize the model’s performance.

Following the model training, Figure 11 illustrates
the model’s loss over the training sessions. It shows
that as the epochs progress, there is a predictable de-
crease in loss and an increase in accuracy, suggesting
that the model is successfully learning and improving
its ability to make accurate predictions. Therefore,
Figure 11 confirms that the model is appropriately
trained.

Figure 11. Loss During Training.

Then, to assess the performance of a machine learn-
ing model in its predictions, it is essential to measure
its accuracy. It is achieved through the use of per-
formance metrics such as the root mean square error



Torres Guin et al. / IoT Architecture for Vehicle Pollutant Gas Emission Monitoring and Validation through

Machine Learning 15

(RMSE), the mean square error (MSE), and the co-
efficient of determination (R squared). These metrics
help confirm the accuracy of regression models [19]
and play a crucial role in evaluating and refining learn-
ing models, enabling a deeper understanding of their
ability to explain and predict data. These metrics are
presented below in equation (2):

To assess the predictive performance of a machine
learning model, it is crucial to measure its accuracy.
This is accomplished by employing performance met-
rics such as the root mean square error (RMSE), the
mean square error (MSE), and the coefficient of deter-
mination (R-squared). These metrics are instrumental
in verifying the accuracy of regression models [19] and
play an essential role in evaluating and refining learn-
ing models. They enable a deeper understanding of
the models’ capabilities to explain and predict data.
These metrics are presented below in Equation (2):

MSE = 1
n

∑n
i=1

(
y

(i)
real − y

(i)
pred

)2

RMSE =
√

1
n

∑n
i=1

(
y

(i)
real − y

(i)
pred

)2

R2 = 1 − SSres

SStot

(2)

Where SSres is the sum of the squares of the dis-
crepancies between the observed and predicted values.
SStot represents the sum of the squares of the differ-
ences between the observed values and and their mean.
An R2 value close to 1 indicates a good fit of the model,
whereas a value close to 0 suggests that the model does
not adequately explain the data’s variability.

The results of the model metrics are auspicious:
the coefficient of determination (R2) reaches an out-
standing 0.992, indicating an exceptional ability to
explain the variability in the data. The mean squared
error (MSE) is at 20.59, demonstrating a reasonably
low average magnitude of squared errors, meanwhile,
the root mean squared error (RMSE) stands at 4.53,
confirming significant accuracy in the model’s pre-
dictions. These results underscore the model’s robust
capability to forecast emissions of pollutant gases in
the automotive fleet, affirming its suitability for pre-
dictive applications. These values are illustrated in
Figure 12.

Figure 12. Results of the model metrics.

To evaluate the effectiveness of the developed
model, a test comparing the actual values of pollu-
tant gas emissions with the predictions generated by
the neural network was conducted (Figure 13). This
visual analysis sought the proximity of the points to
an ideal diagonal line, representing perfect prediction.
The dispersion and distribution of points on the graph

facilitate a quick assessment of the model’s ability to
capture variability in the actual data. Alignment close
to the diagonal indicates precise predictions, while sig-
nificant dispersion suggests areas for improvement in
the model’s predictive accuracy. This approach pro-
vides an intuitive and visual assessment of the quality
of the model’s predictions relative to the actual data.

Therefore, implementing an Artificial Neural Net-
work (ANN) to monitor vehicle pollutant gas emissions
significantly enhances and effectively complements con-
ventional monitoring methods. Unlike simpler, linear
approaches, ANNs can capture complex nonlinear re-
lationships in the data, thereby offering improved pre-
diction accuracy. They dynamically adapt to changes,
providing more robust and flexible monitoring. Fur-
thermore, ANNs efficiently process multidimensional
and complex data, simultaneously handling multiple
inputs such as temperature, humidity, and various gas
emissions. The potential for machine learning and con-
tinuous improvement enables ongoing enhancements
in accuracy as more data on vehicle emissions are
collected.

Figure 13. Model Testing.

4. Conclusions

This article thoroughly examines the monitoring of pol-
lutant gas emissions in vehicles, from the construction
of a dedicated sensor node for data collection to the
development of an Artificial Neural Network (ANN)
model for predicting CO2 emissions. The implementa-
tion of the sensor node, equipped with DHT22, MQ9,
and MQ135 sensors, has proven effective in capturing
critical data such as temperature, humidity, and gas
concentrations during tests on a 2012 Kia Sportage
SUV. The validation of these data, conducted through
a technical vehicle review, confirms the accuracy and
reliability of the measurements.

Subsequently, an ANN model was utilized, leverag-
ing vehicle emissions data from Canada and focusing
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on key variables identified through correlation analysis.
The model results, boasting a remarkable coefficient
of determination (R2) of 99.2%, underscore its ability
to predict CO2 emissions accurately. These findings
demonstrate the effectiveness of integrating advanced
sensor technologies with machine learning models, pro-
viding a robust approach for monitoring and predicting
vehicle emissions, thereby contributing to the manage-
ment and mitigation of environmental pollution.

For future work, the proposed architecture will be
implemented in urban buses, where the Artificial Neu-
ral Network (ANN) is expected to significantly enhance
air quality control and vehicle condition monitoring.
This implementation will facilitate more effective man-
agement of circulation policies and planning.
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