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Abstract Resumen
This article proposes a gain-scheduling procedure
based on quasi-LPV modeling for a nonlinear coupled
tank system to track the liquid level with zero steady-
state error. The nonlinearities are directly represented
by a parameter vector that varies within a bounded
set constrained by the physical limits of the tank sys-
tem levels. This approach enables accurate nonlinear
system modeling using a linear parameter-varying
model. State-feedback linear controllers are designed
at the extreme vertices of the bounded set. The global
controller is derived as the weighted average of local
controller contributions, with the weighting deter-
mined by the instantaneous values of the parameter
vector. Two interpolation mechanisms are proposed
to implement this weighted averaging of the linear
controllers. The results confirm the effectiveness of
the proposed method in achieving accurate liquid
level tracking.

En este artículo se propone un procedimiento de
programación de ganancias basado en un modelado
cuasi-LPV de un sistema no lineal de tanques acopla-
dos para seguir el nivel de líquido con error en estado
estacionario nulo. Las no linealidades están represen-
tadas directamente por un vector de parámetros que
varía dentro de un conjunto acotado por los límites
físicos del nivel del sistema de tanques. Esto permite
un modelado exacto del sistema no lineal utilizando
un modelo lineal de parámetros variantes. Luego, se
diseñan controladores lineales de realimentación de es-
tado en los vértices extremos del conjunto acotado. El
controlador global corresponde a un promedio ponder-
ado de las contribuciones locales. Esta ponderación
depende de los valores instantáneos del vector de
parámetros. Para implementar el promedio ponder-
ado de los controladores lineales, se proponen dos
mecanismos de interpolación. Los resultados obteni-
dos muestran la efectividad del método.
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1. Introduction

The control of liquid levels in tanks is widely employed
in various industries, including food and beverage pro-
duction, nuclear and petrochemical plants, and the
pharmaceutical sector. Generally, interactions between
tanks occur due to coupling, resulting in nonlinear be-
havior [1]. Numerous control strategies have been pro-
posed for coupled tank systems, including Proportional-
Integral-Derivative (PID) controllers [2–4], Fuzzy con-
trol [5,6], Model Predictive Control [7,8], Backstepping
Control [9,10], Sliding-Mode Control [11,12], Fractional
PID controllers [13, 14], Robust control [15]. Active
Disturbance Rejection Control [16,17] and Two-Degree-
Of-Freedom controllers [18]. Some of these techniques
rely on nonlinear system theory, which can be challeng-
ing to implement, while others employ linearization
of the system equations around an operating point.
For the local operating range, designs based on Jaco-
bian linearization perform effectively. However, under
significant disturbances or when faster settling times
are required, the performance of such controllers can
deteriorate due to a loss of robustness.

Gain scheduling [19, 20] is a widely adopted ap-
proach in industry for controlling nonlinear systems
by breaking down the nonlinear design problem into
several smaller, manageable subproblems where linear
design tools can be applied. For instance, in robot
control, controller dynamics are adjusted in real-time
based on varying inertia and geometry. Similarly, most
aircraft control laws are modified by interpolating in-
dividually designed controllers. In recent decades, the
Linear Parameter Varying (LPV) system theory has
gained prominence as a powerful paradigm for system
identification, analysis, and controller synthesis [21–23].
This class of systems is particularly valuable as it allows
nonlinearities to be incorporated as varying parameters
within a bounded set, ensuring that the possible trajec-
tories of the LPV system encompass all trajectories of
the original nonlinear system. When these parameters
include state vector elements, the system is referred
to as quasi-LPV [24]. In this study, the nonlinearities
of the tank system model, represented by liquid levels,
are considered uncertain but constrained within the
technological limits of the equipment ([0, 30]cm). This
allows for an accurate representation of the nonlinear
terms by embedding them into a quasi-LPV model.
The advantage of this approach is that it enables the
design of linear controllers using state-space techniques,
ensuring zero steady-state tracking error for constant
reference inputs and guaranteeing a pole-dominant
criterion [25,26].

Within a gain-scheduling scheme, the control of
the nonlinear coupled tank system is achieved through
local controller interpolation. Two interpolation mecha-
nisms are proposed: (1) analytical interpolation, where
a system of linear equations is continuously solved to

compute the weighting factors, and (2) geometric in-
terpolation, where the weights of the local controllers
are determined based on the Euclidean distance to
some vertex points. Analytical interpolation, initially
presented in [27] and inspired by concepts from Takagi-
Sugeno fuzzy models, is implemented in this study in
a simplified form without incorporating any fuzzy el-
ements. Geometric interpolation, on the other hand,
offers an innovative approach in this context. While
quasi-LPV theory has been widely applied in fields
such as missile guidance [28,29] and robotics [30,31],
its application to tank systems remains relatively un-
explored despite the significant industrial relevance of
this process.

The results confirm the effectiveness of the pro-
posed method in controlling the coupled tank system.
The article is structured as follows: Section 2 details
the quasi-LPV control design method, with a particular
focus on the formulation of two interpolation mecha-
nisms, which are integrated within a gain-scheduled
tracking control strategy and describes the coupled
tank system’s nonlinear model. In Section 3, the quasi-
LPV design method is applied to the system. Finally,
the conclusions are presented in Section 4.

Notación: Bold capital letters denote matrices,
while bold lowercase letters represent vectors(i.e. θj is
the j-th component of the vector θ). Superscripts indi-
cate vectors; for instance, θi refers to the i-th vector,
and θi

j denotesthe j-th component of the i-th vector.
ḟ(t) = df(t)/dt and f̈(t) = d2f(t)/dt2. R denotesthe
set of real numbers.

2. Materials and methods

2.1. Quasi-LPV control design

Most existing nonlinear controller synthesis approaches
focus on input-affine systems [32], which are typically
described as equation (1):

ẋ(t) = f [x(t)] + g[x(t)]u(t) (1)

Where x : R+ → Rn is the state vector, u :
R+ → R is the control input, t is the independent
variable of time, f : Rn → Rn and g : Rn → Rn

are nonlinear fields. The general nonlinear equation
ẋ(t) = f [x(t), u(t)], which frequently appears, can,
under technical assumptions, be transformed into (1)
through a nonlinear feedback transformation [33].

The first step in the synthesis procedure is to derive
a quasi-LPV representation of the form as seen in the
equation (2):

ẋ(t) = A[θ(t)]x(t) + B[θ(t)]u(t), θϵΩ (2)

For the nonlinear system described in equation
(1). Here θ represents a parameter vector that varies
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within a bounding box Ω. In quasi-LPV modeling, it
is assumed that there is a relationship between the
parameter vector and the system states, θ = σ(x),
such that for all parameter values within Ω.

A[θ(t)]x(t) + B[θ(t)]u(t) = f [x(t)] + g[x(t)]u(t)

2.2. Interpolation mechanisms

Defining θiϵRn, i = 1, ..., N in equation (2) as the vec-
tors representing the extreme combinations of parame-
ters in Ω, a set of local linearized models is obtained
as follows:

(Ai, Bi) = (A(θi), B(θi)), i = 1, ..., N (3)

For each local model, a state vector gain Kican
be designed. The parameter vector θ(t) is then used
to construct the overall gain-scheduled controller by
interpolating the local controllers. At any given time,
θ(t) can be expressed as equation (4):

θ(t) =
N∑

i=1
αi(t)θi,

N∑
i=1

αi(t) = 1 (4)

The weights αi(t) are computed by solving the
system of linear equations:

W η = v (5)
Where:

η =

 α1(t)
...

αN (t)

 , W =
[
θ1 · · · θN

1 · · · 1

]
, ν =

[
θ(t)

1

]

The interpolation scheme based on the weights com-
puted from the continuous solution of equation (5) is
referred to as analytical interpolation to distinguish it
from geometric interpolation, which will be described
below.

At any given time, the Euclidean distance between
the state-dependent parameter vector θϵRn and any
of the extreme vectors θiϵRn within the bounding box
Ω can be computed for i = 1, . . . , N as:

θθi =
√

(θ1 − θi
1)2 + · · · + (θn − θi

n)2 (6)

The relative contribution of the parameter vector
θ(t) on each vertex θi is given by:

aj = θθj∑N
i θθi

, j = 1, ..., N

Points further from the vertices should have lower
weights. Therefore, the complementary distance, 1 −

¯θθi, is used in the calculation. The complementary rel-
ative contribution is then computed as bj = 1−aj , j =
1, . . . , N. Finally, the weight αj(t) para j = 1, . . . , N
at any given time is determined as:

αj = bj∑N
i=1 bi

=
1 − θθj∑N

i=1
θθi∑N

j=1

(
1 − θθj∑N

i=1
θθi

) (7)

As in the analytical procedure, the weights com-
puted using the geometric approach continuously sat-
isfy the equation

∑N
j=1 αj(t) = 1. The key difference

between the two methods is that the geometric ap-
proach ensures positive weights, whereas the analytical
procedure does not. This may necessitate conditioning
of the control input if the actuator operates only with
positive signals.

2.3. Tracking a step reference input

Using the computed weights, the model in equation
(2) can be approximated as a combination of the local
linear models:

ẋ(t) =
N∑

i=1
αi(t)Ai︸ ︷︷ ︸

Ã

x(t) +
N∑

i=1
αi(t)Bi︸ ︷︷ ︸

B̃

u(t) (8)

The design problem now focuses on tracking a step
reference input r(t) with zero steady-state error e(t)
defined as:

e(t) = r(t) − y(t) (9)
Where is the controlled output. Taking the time

derivative of equation (9), for a constant reference
input yields:

y(t) = Cx(t) (10)

ė(t) = −Cẋ(t) (11)
Taking the time derivative of each local linear

model (Ai, Bi) for i = 1, . . . , N yields:

ẍ(t) = Aiẋ(t) + Biu̇(t) (12)
Equations (11) and (12) can be combined as:

ż(t) = Fiz(t) + Giu0(t) (13)
Where:

z(t) =
[
e(t) ẋ(t)

]T
, u0(t) = u̇(t),

Fi =
[

0 −C
0 Ai

]
, Gi =

[
0

Bi

]
.
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A state feedback gain for system (13) is constructed
as:

u0(t) = Kiz(t) =
[
Kei

Kxi

] [
e(t)
ẋ(t)

]
(14)

After integrating equation (14), the actual control
signal becomes:

u(t) = Kei

∫ t

0
e(τ)dτ + Kxix(t) (15)

Using the same weights αi(t), a time-varying state
feedback gain for system (8) is constructed as:

u(t) = K̃e

∫ t

0
e(τ) dτ + K̃xx(t) (16)

Where:

K̃e(t) =
N∑

i=1
αi(t)Kei

, K̃x(t) =
N∑

i=1
αi(t)Kxi

Figure 1 illustrates the implementation of the con-
trol policy described in equation (15) for each local
model, as defined in equation (3). Additionally, Fig-
ure 2 depicts the global controller that enables the
implementation of the control law in equation (16) by
interpolating the local controllers, either using weights
computed analytically (equation (5)) or geometrically
(equation (7)). For the augmented tracking system in

equation (13), the gain Ki =
[

Kei︸︷︷︸
(1x1)

Kxi︸︷︷︸
(1xN)

]
is com-

puted for each i = 1, . . . , N by solving a closed-loop
pole placement problem using the Matlab command:

≫ Ki = place(Fi, Gi, P ) (17)

Figure 1. Local tracking control system block diagram

Figure 2. Overall tracking controller implementation by
interpolating local controllers

Where P represents the desired closed-loop poles,
selected to satisfy a guaranteed pole-dominant crite-
rion [25,26], based on closed-loop design requirements
specified in the time domain, such as overshoot (OS)
and settling time (Ts). In light of the above discussion,
the design algorithm for implementing the interpolated
control law in equation (16) is summarized in Table 1.

Table 1. Design algorithm for quasi-LPV control

Step 1 Construct a quasi-LPV model (2) for the nonlinear system to
be controlled (1).

Step 2 From (2), derive a set of local linearized models (3).

Step 3
Compute the local gains kei y Kxi en (15) para cada
modelo de seguimiento local aumentado en (13), in (15) for
each local tracking augmented model in (13), using the closed-
loop specifications for OS y Ts through the Matlab
command (17).

Step 4 Compute the weights αi by continuously solving (5) or (7).
Step 5 Interpolate the local controllers obtained in Step (2) through

(16).

2.4. Coupled Tank System

Figure 3 depicts the coupled tank system. It consists
of a single pump and two tanks, each equipped with a
pressure sensor to measure the water level. The pump
transfers water from the bottom reservoir to the top
of the system. Depending on the configuration of the
outflow valves, water can flow into the upper tank, the
lower tank, or both. This configuration is illustrated
in Figure 4, where the pump output is connected to
the first tank.

x1 and x2 represent the water levels in tanks 1 and
2, respectively. The vector functions in the form of
equation (18) for the coupled tank system are derived
using Bernoulli’s law and the mass balance princi-
ple [34] and are expressed as:

f(x) =
[
−(Ad1/A1

√
2gx1(t) 0

(Ad1/A2
√

2gx1(t) −(Ad2/A2
√

2gx2(t)

]
g(x) =

[
Kf /A1

0

]
(18)

Figure 3. Coupled tank system
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Figure 4. Standard configuration of the coupled tank
system

Where A1 and A2 denote the cross-sectional areas
of tanks 1 and 2, respectively. Ad1,Ad2 represent the
cross-sectional areas of the corresponding orifices, g is
the acceleration on Earth due to gravity, and Kf is
the pump flow constant. The numerical values of these
parameters are provided in Table 2.

Table 2. Physical parameters of the coupled tank system

Description Value Unit

Pump flow constant (Kf ) 4 cm3/s/V

Small Outflow Orifice
0.635 cmDiameter of Tank 1 (Do1)

Small Outflow Orifice
0.476 cmDiameter of Tank 2 (Do2)

Tanks’ Diameter (Dt1, Dt2) 4.445 cm
Water levels range of

30 cmTanks 1 and 2
Acceleration due to gravity(g) 981 cm/s2

Pump peak voltage 22 V

3. Results and discussion

This section outlines the implementation and evaluates
the performance of the quasi-LPV control method, as
summarized in Table 1.

3.1. Quasi-LPV model

The input voltage applied to the pump serves as the
control signal, while the water level in the second tank
is selected as the controlled output. Based on equation
(18), the nonlinear model of the tank system can be
expressed as:

ẋ1(t) = −Ad1

A1

√
2gx1(t) + Kf

A1
u(t)

ẋ2(t) = Ad1

A2

√
2gx1(t) − Ad2

A2

√
2gx2(t)

The nonlinear terms in each equation can be refor-
mulated as follows:

ẋ1(t) = −Ad1

A1

√
2gx2

1(t)
x1(t) + Kf

A1
u(t)

ẋ2(t) = Ad1

A2

√
2gx2

1(t)
x1(t) − Ad2

A2

√
2gx2

2(t)
x2(t)

Resulting in:

ẋ1(t) = −Ad1
√

2g

A1

√
1

x1(t)x1(t) + Kf

A1
u(t) (19)

ẋ2(t) = Ad1
√

2g

A2

√
1

x1(t)x1(t)− Ad2
√

2g

A2

√
1

x2(t)x2(t)

Defining the parameter vector in (19) as:

θ(t) = [θ1(t) θ2(t)]T = [1/
√

x1 1/
√

x2]T (20)

Utilizing the numerical values from Table 2, the
quasi-LPV model in the form of equation (2) is ex-
pressed as:

ẋ(t) =
[
−0.904θ1(t) 0
0.904θ1(t) −0.508θ2(t)

]
x(t)+

[
0.258

0

]
u(t)

(21)

y(t) =
[
0 1

]︸ ︷︷ ︸
C

x(t)

The liquid levels in the tanks are considered uncer-
tain but vary within their physical limits, as specified
in Table 2, over the interval:

x1(t), x2(t)ϵ[5 25]cm (22)

When the liquid levels in the tanks vary within the
range specified in equation (22), the parameter vector
in equation (20) will fluctuate within the rectangular
bounding box:

θ1(t), θ2(t)ϵ[0.20 0.45] (23)
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3.2. Local linearized models

The extreme parameter combinations within the
bounding box in equation (23) yield the following vec-
tors:

θ1 =
[
0.20
0.20

]
θ2 =

[
0.20
0.45

]
,

θ3 =
[
0.45
0.20

]
, θ4 =

[
0.45
0.45

] (24)

This results in the following set of local linearized
models: (Ai, Bi) = (A(θi), B) for i = 1, . . . , 4.

A1 =
[
−0.181 0
0.181 −0.102

]
A2 =

[
−0.181 0
0.181 −0.229

]
A3 =

[
−0.407 0
0.407 −0.102

]
A4 =

[
−0.407 0
0.407 −0.229

]
B =

[
0.258

0

]
(25)

3.3. Local controllers

Using equation (25), the augmented systems in equa-
tion (13) for each vertex are given by:

ż(t) =
[

0 −C
0 Ai

]
z(t) +

[
0
B

]
u0(t) (26)

The four controller gains Ki in equation (15) are
computed using the closed-loop time domain specifica-
tions OS = 1% and Ts = 40s. The calculation is then
performed as outlined in [35].

OS = e(−ζπ/
√

1−ζ2) ⇒ ζ = 1√
1+

(
π

ln(OS)

)2

= 0.83
Ts = 4/ζωn ⇒ ωn = 4

ζTs
= 0.1

The resulting dominant poles p1,2 = −0.0996 ±
j0.0669(s2 + 0.1992s + 0.0144). The desired closed-
loop poles used in equation (17) are P = [−0.0996 ±
j0.0669, −0.996], where p3 = −0.996 is a fast pole with
negligible influence on the OS and Ts specifications.
The controller gains are computed using equation (17)
as follows:

K1 =
[

−0.3161︸ ︷︷ ︸
Ke1

3.5380 2.1888︸ ︷︷ ︸
Kx1

]

K2 =
[

−0.3161︸ ︷︷ ︸
Ke2

3.0457 −0.1663︸ ︷︷ ︸
Kx2

]

K3 =
[

−0.1405︸ ︷︷ ︸
Ke3

2.6620 0.9728︸ ︷︷ ︸
Kx3

]

K4 =
[

−0.1405︸ ︷︷ ︸
Ke4

2.1698 −0.0739︸ ︷︷ ︸
Kx4

]
(27)

3.4. Interpolation mechanisms

In the analytical approach, equation (5) is represented
as the following system of linear equations:

0.20 0.20 0.45 0.45
0.20 0.45 0.20 0.45

1 1 1 1


︸ ︷︷ ︸

W


α1(t)
α2(t)
α3(t)
α4(t)

 =

θ1(t)
θ2(t)

1



Solving this system using the pseudoinverse matrix
(W T W )−1W T yields the following equation:


α1(t)
α2(t)
α3(t)
α4(t)

 =


−0.50 −0.50 1
−3.25 0.75 1
0.75 −3.25 1
3.50 3.50 −2


θ1(t)

θ2(t)
1

 (28)

For geometric interpolation, equation (7) is im-
plemented directly using a Matlab function block. A
straightforward Matlab function code is written and
integrated into a Simulink model, which executes the
simulation.

3.5. Gain-scheduled control implementation

The gain-scheduled control strategy depicted in Fig-
ure 2 was implemented. Figure 5 illustrates the liquid
level response in the second tank following a set-point
change, comparing both interpolation methods for the
computed linear controllers (27).

Figure 5. Second tank closed-loop liquid level response
for analytical and geometric interpolation methods

The geometric method encounters specific issues
at the start of the simulation due to its inability to
provide the required negative control action. After this
initial phase, the performance of both interpolation
schemes becomes comparable.

Figure 6 illustrates the control signal, while Figure
7 focuses on the first 20 seconds of the control signal.
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It is evident that when a negative control signal is
required, the geometric scheme remains at zero, con-
firming the issues observed at the beginning of the
simulation, as depicted in Figure 5. It is important
to note that the control signal provided by the pump
cannot be negative, a limitation not accounted for dur-
ing the simulation when evaluating the performance
of both interpolation schemes.

Figure 6. Pump voltage control signal for analytical and
geometric interpolation methods

Figure 7. Detail of the control signal during the first 20 s

3.6. Further results

Figure 8 illustrates the parametric bounding box de-
fined by equation (23). The previous results involved
the implementation of the gain scheduled controller
through the interpolation both geometric and analyti-
cal of the local controllers computed at the vertices (A),
(B), (C), and (D), based on a dominant pole criterion
for the desiredOS and Ts specifications. Additionally,
the simulation permitted the control signal to take on
negative values to facilitate a comparison between the
two interpolation mechanisms.

The gain-scheduled controller is implemented in
this section, using various local controllers computed
within the region shown in Figure 8, as specified in

Table 3. The control signal is constrained to remain
within the operational range of the pump (0-22 V),
and the desired closed-loop poles in equation (17) are
selected as P = [−0.1, −0.2, −10] , rather than em-
ploying the dominant pole criterion.

Figure 8. Points chosen in the parametric bounding box
(23) to compute local controllers

Table 3. Points chosen in region (3) to compute local
controllers.

Model Points chosen in (23)
M1 (A), (B), (C), (D)
M2 (E), (F), (G), (H)
M3 (A), (D)

Model M1 utilizes the vertices of the region, M2
computes the local controllers along the edges, and
model M3 considers the extreme vertices of the re-
gion, where parameters θ1 and θ2 take their minimum
and maximum possible values. The selection of the
M3 model is justified by the well-known Edge Theo-
rem [36]. Figure 9 illustrates the level in the second
tank and the pump control signal using the M1 model
with analytical interpolation.

Figure 9. Second tank level and pump voltage for M1
model and analytical interpolation
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Figure 10 presents a similar scenario employing
geometric interpolation. Figures 11 , 12 replicate the
analysis for the M2 model, using analytical and geo-
metric interpolation mechanisms, respectively.

Figure 10. Second tank level and pump voltage for M1
model and geometric interpolation

Figure 11. Second tank level and pump voltage for M2
model and analytical interpolation

Figure 12. Second tank level and pump voltage for M2
model and geometric interpolation

Figures 13 and 14 display the results for the M3
model, again using analytical and geometric interpola-
tion, respectively. Finally, Figures 15 and 16 compare
the evolution of the liquid level in the second tank
for all three models, with analytical and geometric
interpolation considered, respectively.

Figure 13. Second tank level and pump voltage for M3
model and analytical interpolation

Figure 14. Second tank level and pump voltage for M3
model and geometric interpolation

Figure 15. Second tank level for models M1, M2 and M3
using analytical interpolation
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Figure 16. Second tank level for models M1, M2 and M3
using geometric interpolation

4. Conclusions

A gain-scheduled procedure was proposed to control a
coupled tank system modeled as a quasi-LPV system.
The nonlinearities of the model are directly captured
by a set of uncertain parameters that vary within a
bounded set, constrained by the physical limits of the
tank system. Extreme combinations of the parameter
vector were computed, and local linear approxima-
tions were obtained. These approximations were then
used in the state-space synthesis of control laws to
track a constant reference input. The global controller
was constructed as a weighted average of the local
contributions, where the weights depended on the in-
stantaneous values of the parameter vector. Two inter-
polation mechanisms, geometric and analytical, were
employed to determine the weighted average of the
linear controllers. The geometric method is based on
the Euclidean distance between the parameter vector
and the vertices, while the analytical method involves
solving a linear system of equations using the pseudoin-
verse of a matrix. The geometric scheme is simpler and
generates only positive control actions, with a very
short computation time. In contrast, the analytical
scheme can provide both positive and negative control
actions but requires significantly more processing time.
Simulation results demonstrated that using the two
extreme vertices (Model M3) to compute the interpo-
lated local controllers reduces the computational effort
needed.

The primary limitation of the methodology is the
challenge of accurately determining the quasi-LPV
model to capture the system’s nonlinearities, which
is not an easy task for all plants. This indicates that
the proposed approach may not be universally ap-
plicable. However, when a nonlinear plant can be ef-
fectively modeled using a linear parameter-varying
system, the method is straightforward to implement
and yields satisfactory results. Another key aspect

of the method is that the control law for designing
the local controllers is not limited to closed-loop pole
assignment, as demonstrated in this article. Various
state-feedback control strategies can be employed, in-
cluding those that account for optimality, robustness,
and constraints. Additionally, although the guaranteed
pole-dominant criterion is suitable for linear systems,
a notable discrepancy emerged between the design
specifications and the actual performance in the case
of the nonlinear tank system. This gap was mitigated
by setting dominant real poles to improve control over
the output.

Ongoing work focuses on the real-time implementa-
tion of the proposed design method and the inclusion
of state observers.
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