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Abstract Resumen
This study evaluates the effectiveness of Recurrent
Neural Networks (RNNs) and Transformer-based
models in predicting the Air Quality Index (AQI). Ac-
curate AQI prediction is critical for mitigating the sig-
nificant health impacts of air pollution and plays a vi-
tal role in public health protection and environmental
management. The research compares traditional RNN
models, including Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) networks, with ad-
vanced Transformer architectures. Data were collected
from a weather station in Cuenca, Ecuador, focusing
on key pollutants such as CO, NO2, O3, PM2.5, and
SO2. Model performance was assessed using Root
Mean Square Error (RMSE), Mean Absolute Error
(MAE), and the Coefficient of Determination (R2).
The findings reveal that the LSTM model achieved su-
perior performance, with an R2 of 0.701, an RMSE of
0.087, and an MAE of 0.056, demonstrating superior
capability in capturing temporal dependencies within
complex datasets. Conversely, while Transformer-
based models exhibited potential, they were less effec-
tive in handling intricate time-series data, resulting
in comparatively lower accuracy. These results posi-
tion the LSTM model as the most reliable approach
for AQI prediction, offering an optimal balance be-
tween predictive accuracy and computational effi-
ciency. This research contributes to improving AQI
forecasting and underscores the importance of timely
interventions to mitigate the harmful effects of air
pollution.

Este estudio evalúa la eficacia de las redes neu-
ronales recurrentes (RNN) y los modelos basados
en transformadores para predecir el índice de cali-
dad del aire (ICA). La investigación compara los
modelos RNN tradicionales, incluidos los de memoria
a corto y largo plazo (LSTM) y la unidad recur-
rente controlada (GRU), con arquitecturas avanzadas
de transformadores. El estudio utiliza datos de una
estación meteorológica en Cuenca, Ecuador, centrán-
dose en contaminantes como CO, NO2, O3, PM2.5 y
SO2. Para evaluar el rendimiento de los modelos, se
utilizaron métricas clave como el error cuadrático
medio (RMSE), el error absoluto medio (MAE) y el
coeficiente de determinación (R2). Los resultados del
estudio muestran que el modelo LSTM fue el más
preciso, alcanzando un R2 de 0,701, un RMSE de
0,087 y un MAE de 0,056. Esto lo convierte en la
mejor opción para capturar dependencias temporales
en los datos de series temporales complejas. En com-
paración, los modelos basados en transformadores de-
mostraron tener potencial, pero no lograron la misma
precisión que los modelos LSTM, especialmente en
datos temporales más complicados. El estudio con-
cluye que el LSTM es más eficaz en la predicción del
ICA, equilibrando tanto la precisión como la eficiencia
computacional, o que podría ayudar en intervenciones
para mitigar la contaminación del aire.

Keywords: Air Quality Index, RNN, LSTM, Trans-
formers, Pollution Forecasting
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1. Introduction

Air pollution poses a significant challenge to sustain-
able development due to its profound impact on public
health, accounting for approximately 7 million deaths
globally in 2019, according to the World Health Or-
ganization (WHO) [1,2]. Despite the health benefits
of clean air, a substantial portion of the population
resides in urban areas or near industrial facilities with
high levels of vehicular emissions [3]. The combustion
of fossil fuels releases harmful pollutants, including
carbon monoxide (CO), ozone (O3), sulfur dioxide
(SO2), nitrogen dioxide (NO2), and particulate mat-
ter (PM2.5 and PM10), which adversely affect human
health and the environment [4]. The Air Quality Index
(AQI) is a crucial metric for assessing and managing air
quality, providing a comprehensive measure to evaluate
pollution levels and their implications [5, 6].

The Air Quality Index (AQI) has been extensively
studied for its environmental impacts [7–9], economic
implications [7], [10] and predictive applications using
data from monitoring stations [11–13]. Methods for
AQI prediction are broadly classified into numerical
and data-driven models [14]. Traditional statistical ap-
proaches, such as linear regression [15,16] are employed
alongside machine learning (ML) algorithms [17, 18]
and hybrid models that integrate elements of both
methodologies [14], [19]. Since the early 21st century,
ML techniques, including artificial neural networks
(ANN), support vector machines (SVM), extreme learn-
ing machines (ELM), and k-nearest neighbors (KNN),
have become dominant in AQI prediction [20,21].De-
spite their widespread use, these methods exhibit lim-
itations in processing temporal data, prompting the
adoption of recurrent neural networks (RNNs), such
as Long Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU), for sequence prediction tasks.

Recent research has demonstrated the effectiveness
of convolutional neural networks (CNNs) in AQI pre-
diction. For instance, Yan et al. [22] developed models
utilizing CNN, LSTM, and CNN-LSTM architectures,
concluding that LSTM performs optimally for multi-
hour forecasting, while CNN-LSTM is better suited for
short-term predictions. Similarly, Hossain et al. [23]
integrated GRU and LSTM for AQI forecasting in
Bangladesh, achieving superior performance compared
to individual techniques. To address long-term depen-
dencies in sequential data, the Transformer model,
which employs an encoder-decoder architecture, has
emerged as a promising solution [24]. Guo et al. [25]
applied a Transformer-based network, BERT, for AQI
forecasting in Shanxi, China, achieving superior accu-
racy compared to LSTM. Ma et al. [26] developed the
Informer model for AQI prediction in Yanan, China,
demonstrating notable improvements in reliability and
precision. Additionally, Xie et al. [27] proposed a paral-
lel multi-input Transformer model for AQI forecasting

in Shanghai.
Comparing AI models for AQI prediction is criti-

cal due to variations in databases, evaluation metrics,
and algorithms, which significantly influence model
performance. Identifying the most effective model is
essential for enhancing prediction accuracy and sup-
porting informed decisions in air quality management,
a key factor in public health and urban planning.

2. Materials and methods

2.1. General Description

The methodology of this research consists of the fol-
lowing steps, as illustrated in Figure 1:

Figure 1. Research methodology flowchart

• Data acquisition and preprocessing.

• Splitting data into training (80%) and testing
(20%) subsets.

• Analyzing the time horizon with options set at4,
24, and 120 hours.

• Selecting models: CNN, LSTM, RNN, and Trans-
former architectures.

• Applying a random search for optimal hyperpa-
rameter selection.

• Evaluating models using the best metrics from
tests.

• Training the selected models with the best hy-
perparameters.

• Testing the trained models.

• Evaluating model performance using R2, RMSE,
MAE, and MAPE.
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• Comparing results across models.

• Drawing conclusions based on the model com-
parison and overall analysis.

2.2. Study case

The time series data used in this study were obtained
from a weather station in Cuenca, Azuay, Ecuador,
located at 7-77 Bolivar Street and Borrero Street (co-
ordinates: latitude -2.897, longitude -79.00). Managed
by the Empresa Municipal de Movilidad, Tránsito de
Transporte de la Municipalidad de Cuenca (EMOV-
EP), this station provides publicly available data for
personal, research, and governmental use. Positioned in
a central area characterized by its commercial, tourist,
colonial, and residential significance, this station is part
of a network of three monitoring stations in Cuenca,
as depicted in Figure 2.

Figure 2. EMOV-EP weather stations

2.3. Data preprocessing

The meteorological station recorded gas emissions, in-
cluding CO, NO2, O3, PM2.5, and SO2, at 10-minute
intervals throughout 2022, generating approximately
52,560 records. These were exported in CSV format
from the official EMOV-EP website. Where necessary,
measurement units for pollutants were converted (e.g.,
CO from mg/m3 to ppm) to facilitate AQI calculation.
Hourly averages were computed, reducing the dataset
to 8,760 records. After filtering out null values and ir-
relevant data, 7,425 records were retained for analysis.
Table 1 provides an overview of the time series data,
while Figure 3 illustrates the hourly variation of the
recorded gases.

Table 1. Summary of the research time series

Stadistics CO NO2 O3 PM2.5 SO2

Count 7425 7425 7425 7425 7425
Mean 9,909 0.258 0.275 15,040 0.038
Std 7,658 0.112 0.239 10,611 0.067
Min 0.024 0.040 0.000 0.100 0.000
25% 3,704 0.175 0.061 8,010 0.003
50% 8,946 0.241 0.223 12,100 0.011
75% 14,189 0.322 0.435 19,660 0.041
Max 50,454 0.811 1,147 75,330 0.629

Figure 3. CO, NO2, O3, P M2.5, and SO2 registered per
hour

Using the filtered values, the AQI for each pollutant
was calculated following the guidelines outlined in the
air quality report published by the U.S. Environmental
Protection Agency [28]. The AQI computation is based
on the pollutant concentration and is determined using
Equation (1).

Ip = IHI − ILO

BPHI − BPLO
(Cp − BPLO) + ILO (1)

Where:

• IP is the contaminant index p.

• CP is the rounded concentration of the pollutant
p.

• BPHI is the cut-off point that is greater than or
equal to CP .

• BPLO is the cutoff point that is less than or
equal to CP .

• IHI is the AQI value corresponding to BPHI .

• ILO is the AQI value corresponding to BPLO.

The individual contaminant index values (Ip) for
each pollutant p are calculated independently, and the
final AQI is determined by selecting the maximum
value from the set of calculated indices. This selection
methodology ensures that the final AQI reflects the
pollutant exhibiting the highest potential for adverse
health impacts, providing a comprehensive assessment
of air quality conditions.
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To analyze the relationship between the pollutants
and the calculated AQI, a correlation matrix was con-
structed, as illustrated in Figure 4.

Figure 4 illustrates that, in this specific case, based
solely on the pollutant data recorded by the meteo-
rological station, the AQI value exhibits a stronger
correlation with CO and NO2, while its correlation
with O3, PM2.5 and SO2 is minimal. This information
will be considered for the development and configura-
tion of the AI models in subsequent analyses.

Figure 4. Correlation matrix of the different pollutants

Standardization involves transforming the data
such that it has a mean of 0 and a standard devi-
ation of 1. This process is analytically represented by
Equation (2), which was utilized in this research:

XStansdarization = × − mean(×)
standard deviation

(2)

Where:

• X: It is the required value to be normalized.

• Mean: The arithmetic means of the distribution.

• Standard deviation: Standard deviation of the
distribution.

Finally, after standardizing the time series values,
the dataset was partitioned, with 80% allocated for
training and 20% reserved for testing.

2.4. Sliding window

Hota, et al. [29] highlight that a commonly employed
technique in time series analysis is the creation of
sliding windows, which provides a temporal approxi-
mation of the true value of the time series data. This
method accumulates historical time series data within
a specified window to predict the subsequent value.
Figure 5 illustrates the sliding window process with a
window size of 5.

Figure 5. Sliding window process

Considering the aforementioned approach, sliding
windows of 4, 24, and 120 hours were utilized to predict
subsequent time intervals.

2.5. Deep learning

2.5.1. Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN),
Long short-term memory (LSTM),
Transformer model

Recurrent Neural Networks (RNNs) are a class of neu-
ral networks specifically designed for processing se-
quential data. Their architecture enables the output
of one layer to loop back into the input, allowing the
network to retain memory of prior states. This ca-
pability makes RNNs particularly effective for tasks
requiring contextual or historical information, includ-
ing time series prediction, natural language processing,
and speech recognition [30]. A standard RNN configu-
ration is illustrated in Figure 7.

Figure 6. CNN standard configuration

Figure 7. RNN standard configuration
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Long Short-Term Memory Networks (LSTMs) were
developed to address the limitations of traditional
RNNs, such as the vanishing gradient problem, by
incorporating a memory cell capable of retaining in-
formation over extended periods [31]. Each LSTM cell
comprises three gates: the input gate, which controls
the incorporation of new information; the forget gate,
which eliminates irrelevant data; and the output gate,
which determines the information to be passed to the
next step [31]. A standard LSTM configuration is de-
picted in Figure 8.

Figure 8. LSTM standard configuration [32]

Transformers have garnered considerable attention
for their outstanding performance across various do-
mains, including natural language processing (NLP),
computer vision, and speech processing. Renowned
for their ability to model long-term dependencies and
complex interactions in sequential data, Transformers
are particularly well-suited for time series prediction
tasks [24]. The architecture implemented in this study
is depicted in Figure 9.

Figure 9. Transformers model architecture. Adapted from
Youness [33]

2.6. Performance metrics

In the study conducted by Méndez, et al. [20], research
aimed to identify the primary factors influencing air
quality prediction during the period 2011–2021. The
authors found that the most commonly applied metrics
for evaluating machine learning (ML) models include

RMSE, MAE, MAPE, ACC, and R2 as illustrated in
Figure 10.

Figure 10. Evaluation of metrics usage [20]

2.6.1. Root mean square error (RMSE)

Root mean square error (RMSE) is a widely used
metric that quantifies the average difference between
predicted and observed values [34]. The formula for
RMSE is presented in Equation (3):

RMSE =

√√√√ 1
N

N∑
I=1

(yI − YI)2 (3)

Where:

• n: number of samples.

• yI : observed value.

• yI : predicted value.

• (yI − YI)2 : squared error between predicted and
observed values.

2.6.2. Mean absolute error (MAE)

Mean absolute error (MAE) is a metric used to assess
the accuracy of a model by calculating the average of
the absolute errors between predicted and observed val-
ues [34]. The formula for MAE is presented in Equation
(4):

MAE = 1
n

N∑
I=1

|yI − YI | (4)

Where:

• n: number of samples.

• yI : observed value.
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• yI : predicted value.

• |yI − YI |: absolute error between predicted and
observed values

2.6.3. Mean absolute percentage error (MAPE)

Mean Absolute Percentage Error (MAPE) quantifies
the average error as a percentage of the observed values,
providing a scale-independent metric that facilitates
comparisons across different models [34]. The formula
for MAPE is presented in Equation (5):

MAPE = 100%
N

N∑
I=1

∣∣∣∣yI − YI

yi

∣∣∣∣ (5)

Where:

• n: number of samples.

• yI : observed value.

• yI : predicted value.

•
∣∣∣ yI −YI

yi

∣∣∣: relative absolute error, indicating the
proportional deviation of the prediction from the
actual value.

2.6.4. Coefficient of determination (R2)

The coefficient of determination R2 quantifies the pro-
portion of variance in the dependent variable that is
explained by the independent variables of the model.
An R2 value of 1 indicates that the model perfectly
explains the variability in the data, whereas a value of
0 signifies that the model does not explain any variabil-
ity [34]. The formula for R2 is presented in Equation
(6):

R2 =
∑N

I=1(yI − YI)2∑N
I=1(yI − YI)2

(6)

Where:

• n: number of samples.

• yI : observed value.

• yI : predicted value.

• y: mean of all observed values yI .

•
∑N

I=1(yI − YI)2: sum of squared prediction er-
rors.

•
∑N

I=1(yI − YI)2: sum of squared deviations of
the observed values from their mean.

2.7. Random search

In ML, random search (RS) is an optimization tech-
nique used to identify optimal hyperparameters by
exploring random combinations within a predefined
parameter space. This approach is more efficient and
computationally less expensive compared to exhaustive
search methods [35]. Figure 11 illustrates the sequence
of steps involved in the RS process.

Figure 11. Methodology of the random search technique

The process involves the following steps:

• Identifying the AI model to optimize and define
its hyperparameters.

• Setting ranges for each hyperparameter.

• Specifying evaluation metrics, such as R2, MAE,
and RMSE.

• Randomly selecting combinations of hyperparam-
eters.

• Training the model and evaluating its perfor-
mance.

• Choosing the best-performing combination and
retraining the model.

• Validating the performance of the optimized
model.

3. Results and discussion

3.1. Correlation Analysis

Figure 4 illustrates the relationship between varia-
bles using Pearson’s Correlation Coefficient to assess
their correlation with maximum AQI concentration
(AQIMAX). The heatmap reveals that CO has the
strongest positive correlation with AQIMAX (0.56),
followed by NO2 (0.3) and SO2 (0.16), while O3 shows
a negative correlation (-0.36). Furthermore, CO is mod-
erately correlated with NO2 (0.36) and SO2 (0.15),
while O3 demonstrates inverse correlations with both
CO (-0.41) and NO2 (-0.42). PM2.5 exhibits weak neg-
ative correlations with AQIMAX , CO, and NO2 These
results highlight CO as the variable most strongly cor-
related with AQIMAX , providing critical guidance for
selecting the input combinations outlined in Table 2.
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Table 2. Combinations of input variables

Combination Input variables
C1 CO, NO2
C2 CO, O3
C3 CO, PM2.5
C4 CO, SO2
C5 NO2, O3
C6 NO2, PM2.5
C7 NO2, SO2
C8 O3, PM2.5
C9 O3, SO2

C10 CO, NO2, O3
C11 CO, NO2, O3
C12 CO, NO2, PM2.5
C13 CO, NO2, SO2
C14 CO, O3, PM2.5
C15 CO, O3, SO2
C16 CO, PM2.5, SO2
C17 NO2, O3, PM2.5
C18 NO2, O3, SO2
C19 NO2, PM2.5, SO2
C20 O3, PM2.5, SO2
C21 CO, NO2, O3, PM2.5
C22 CO, NO2, O3, SO2
C23 CO, NO2, PM2.5, SO2
C24 CO, O3, PM2.5, SO2
C25 NO2, O3, PM2.5, SO2
C26 CO, NO2, O3, PM2.5, SO2

3.2. Results of the AI models

This section analyzes the performance outcomes of
each model, considering the input combinations out-
lined in Table 3, the type of AI model employed, and
the associated evaluation metrics.

Table 3. CNN model results

IP BS RMSE MAE R2 MAPE (%) PPS
C1 24 0.08 0.06 0.68 16.71 35805.01
C2 24 0.09 0.06 0.68 16.82 58737.06
C3 24 0.09 0.06 0.67 17.26 49748.10
C4 24 0.09 0.06 0.68 17.20 39398.15
C5 24 0.09 0.07 0.65 18.52 43885.02
C6 24 0.10 0.07 0.64 17.65 65236.56
C7 24 0.10 0.07 0.62 16.76 65931.50
C8 24 0.09 0.06 0.69 17.29 53651.60
C9 24 0.09 0.07 0.66 17.88 59559.18

C10 24 0.10 0.07 0.64 17.81 36020.17
C11 24 0.09 0.07 0.65 16.84 44975.06
C12 24 0.09 0.07 0.67 17.59 73533.63
C13 24 0.09 0.06 0.67 16.24 58225.91
C14 24 0.08 0.06 0.69 15.48 49661.10
C15 24 0.09 0.06 0.68 16.42 56290.50
C16 24 0.09 0.07 0.66 17.82 35025.14
C17 24 0.09 0.06 0.68 16.85 76968.79
C18 24 0.09 0.07 0.67 17.31 73779.83
C19 24 0.10 0.07 0.63 18.30 65446.41
C20 24 0.09 0.06 0.67 18.82 76016.82
C21 24 0.09 0.07 0.66 16.72 59341.83
C22 24 0.09 0.06 0.68 16.31 67292.28
C23 24 0.09 0.06 0.68 16.85 44773.68
C24 24 0.09 0.06 0.67 16.73 79901.70
C25 24 0.09 0.06 0.68 16.71 55093.58
C26 24 0.09 0.07 0.67 16.58 75801.26

3.2.1. CNN results

The CNN model was evaluated using 26 different in-
put parameter combinations, all based on a 24-hour
sliding window (Table 4). The R2 ranged from 0.620
to 0.698, with the combination of CO, O3, PM2.5,
and SO2 (Row 24) achieving the highest performance
at an R2 value of 0.698. Conversely, the combination
involving NO2 and SO2 (Row 7) yielded the lowest
performance, with an R2 of 0.620. Regarding error
metrics, the RMSE ranged from 0.087 to 0.097, while
the MAE varied from0.060 to 0.068. Notably, the com-
bination of CO, O3, PM2.5, and SO2 also exhibited
the lowest errors, further highlighting its superior per-
formance.

Table 4. RNN model results

IP BS RMSE MAE R2 MAPE(%) PPS
C1 24 0.09 0.06 0.56 21.97 20477.85
C2 24 0.09 0.06 0.57 21.32 39843.79
C3 24 0.09 0.06 0.57 20.65 41488.60
C4 24 0.09 0.06 0.56 20.48 40265.98
C5 24 0.09 0.06 0.56 22.92 35324.96
C6 24 0.09 0.06 0.56 21.41 37750.82
C7 24 0.09 0.06 0.55 21.36 35319.93
C8 24 0.10 0.06 0.55 21.21 31675.68
C9 24 0.09 0.06 0.56 21.51 34623.43

C10 24 0.09 0.06 0.57 20.98 41072.63
C11 24 0.09 0.06 0.56 21.73 37360.15
C12 24 0.09 0.06 0.57 21.00 41908.50
C13 24 0.09 0.06 0.56 21.00 34451.12
C14 24 0.09 0.06 0.56 21.73 40667.03
C15 24 0.09 0.06 0.56 21.31 36455.38
C16 24 0.09 0.06 0.56 20.74 34073.62
C17 24 0.09 0.06 0.55 21.55 36014.80
C18 24 0.09 0.06 0.56 21.48 34888.69
C19 24 0.09 0.06 0.56 20.92 39017.72
C20 24 0.09 0.06 0.56 21.53 33701.56
C21 24 0.09 0.06 0.58 21.29 35349.87
C22 24 0.09 0.06 0.57 21.14 40265.69
C23 24 0.09 0.06 0.57 20.82 34805.23
C24 24 0.09 0.06 0.56 21.07 37740.95
C25 24 0.09 0.06 0.57 21.67 35611.69
C26 24 0.09 0.06 0.57 21.85 43654.79

The MAPE values, indicating prediction accuracy,
ranged from15.48% to 18.83%. Combinations involv-
ing CO and O3 exhibited the lowest MAPE values,
reflecting higher prediction accuracy. Conversely, com-
binations including NO2 and PM2.5 had higher MAPE
values, indicating lower prediction accuracy. Computa-
tional efficiency varied significantly, with predictions
rates ranging from35,805 to 79,091 predictions per sec-
ond. More complex combinations, such as CO, NO2,
O3, PM2.5, and SO2 (Row 26), required up to 4.5 GB
of RAM, yet achieved superior prediction rates.

In summary, the combination of CO, O3, PM2.5,
and SO2 (Row 24) emerged as the most accurate,
achieving the highest R2, the lowest errors, and strong
computational efficiency. In contrast, combinations
including NO2 and SO2 underperformed across all
metrics, suggesting these variables have a lesser im-
pact on prediction accuracy.
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Where

• IP: Input Parameters

• BS: Best Window

• PPS: Predictions Per Second

3.2.2. RNN results

The RNN model was evaluated using 26 different com-
binations of input parameters within a 24-hour sliding
window (Table 5). The R2 values ranged from 0.533
to 0.576, with the combination of CO, NO2, O3, and
PM2.5 (Row 21) achieving the highest R2 of 0.576.
Conversely, the combination involving NO2 and SO2
(Row 7) showed the lowest performance, with an R2 of
0.533. The RMSE values ranged from 0.092 to 0.097,
while the MAE ranged from 0.058 to 0.063, with the
combination of CO, NO2, O3, and PM2.5, demonstrat-
ing the lowest error rates, indicating superior perfor-
mance.

Table 5. LSTM model results

IP BS RMSE MAE R2 MAPE (%) PPS
C1 24 0.09 2253.00 0.69 15.65 7049.54
C2 24 0.09 0.06 0.69 15.90 8122.33
C3 720 0.09 0.06 0.69 16.26 147.46
C4 720 0.09 0.06 0.67 16.39 141.67
C5 144 0.09 0.06 0.69 16.34 3336.96
C6 144 0.09 0.06 0.68 16.37 3031.92
C7 144 0.09 0.06 0.69 15.31 2987.68
C8 24 0.09 0.06 0.68 16.23 6412.71
C9 24 0.09 0.06 0.68 15.57 6720.89

C10 24 0.09 0.06 0.67 16.11 1544.31
C11 144 0.09 0.06 0.69 16.83 6513.84
C12 144 0.09 0.06 0.69 16.08 869.33
C13 144 0.09 0.06 0.70 15.35 806.71
C14 24 0.09 0.06 0.68 16.09 8009.40
C15 144 0.09 0.06 0.69 15.73 823.46
C16 144 0.09 0.06 0.70 16.50 3871.16
C17 720 0.09 0.06 0.68 16.87 706.77
C18 24 0.09 0.06 0.67 16.36 1023.41
C19 24 0.09 0.06 0.68 15.84 8613.76
C20 24 0.09 0.06 0.68 16.18 8341.78
C21 24 0.09 0.06 0.69 16.50 1036.17
C22 24 0.09 0.06 0.68 16.17 1086.39
C23 144 0.09 0.06 0.70 16.08 501.98
C24 720 0.09 0.06 0.69 16.72 116.44
C25 24 0.09 0.06 0.69 17.31 944.15
C26 24 0.09 0.06 0.70 16.00 6525.65

The MAPE values ranged between20.48% and
22.92%, with the lowest values observed in combina-
tions that included CO and PM2.5, suggesting better
prediction accuracy. In contrast, combinations involv-
ing NO2 and O3 exhibited higher MAPE values, indi-
cating lower accuracy. Computational efficiency varied
significantly, with prediction rates spanning 20,478 to
43,654 predictions per second. More complex combina-
tions, such as CO, NO2, O3, PM2.5, and SO2 (Row
26), required up to 23.4 GB of RAM but demonstrated
higher prediction throughput.

In conclusion, the combination of CO, NO2, O3,
and PM2.5 emerged as the most accurate, achieving
the highest R2, the lowest error metrics, and strong
computational efficiency. In contrast, combinations in-
cluding NO2 and SO2 consistently underperformed
across all metrics, suggesting these variables have a
limited impact on prediction accuracy.

3.2.3. LSTM results

The LSTM model was evaluated using 26 different
combinations of input parameters, primarily with a
24-hour sliding window, although some configurations
employed 144-hour or 720-hour windows (Table 6).
The R2 values ranged from 0.669 to 0.701, with the
combination of CO, NO2, PM2.5, and SO2 (Row 23)
achieving the highest R2 of 0.701. Conversely, the com-
bination of NO2, O3, and SO2 (Row 18) exhibited the
lowest R2 at 0.669. The RMSE values varied between
0.087 and 0.092, while the MAE ranged from 0.056 to
0.062, with the combination of CO, NO2, PM2.5, and
SO2 demonstrating the lowest error metrics, signifying
superior performance.

Table 6. Transformers model results

IP BS RMSE MAE R2 MAPE (%) PPS
C1 24 0.09 2253.00 0.69 15.65 7049.54
C2 24 0.09 0.06 0.69 15.90 8122.33
C3 720 0.09 0.06 0.69 16.26 147.46
C4 720 0.09 0.06 0.67 16.39 141.67
C5 144 0.09 0.06 0.69 16.34 3336.96
C6 144 0.09 0.06 0.68 16.37 3031.92
C7 144 0.09 0.06 0.69 15.31 2987.68
C8 24 0.09 0.06 0.68 16.23 6412.71
C9 24 0.09 0.06 0.68 15.57 6720.89

C10 24 0.09 0.06 0.67 16.11 1544.31
C11 144 0.09 0.06 0.69 16.83 6513.84
C12 144 0.09 0.06 0.69 16.08 869.33
C13 144 0.09 0.06 0.70 15.35 806.71
C14 24 0.09 0.06 0.68 16.09 8009.40
C15 144 0.09 0.06 0.69 15.73 823.46
C16 144 0.09 0.06 0.70 16.50 3871.16
C17 720 0.09 0.06 0.68 16.87 706.77
C18 24 0.09 0.06 0.67 16.36 1023.41
C19 24 0.09 0.06 0.68 15.84 8613.76
C20 24 0.09 0.06 0.68 16.18 8341.78
C21 24 0.09 0.06 0.69 16.50 1036.17
C22 24 0.09 0.06 0.68 16.17 1086.39
C23 144 0.09 0.06 0.70 16.08 501.98
C24 720 0.09 0.06 0.69 16.72 116.44
C25 24 0.09 0.06 0.69 17.31 944.15
C26 24 0.09 0.06 0.70 16.00 6525.65

The MAPE values ranged from 15.31% to 17.31%,
with the lowest values observed in combinations in-
cluding CO and NO2, indicating superior prediction
accuracy. Conversely, combinations involving NO2 and
PM2.5 exhibited higher MAPE values, suggesting lower
accuracy. Computational efficiency varied significantly,
with predictions per second ranging from 116 to 8,613.
Shorter sliding windows generally resulted in higher
prediction rates but required increased RAM usage.
For instance, complex combinations such as CO, NO2,
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O3, PM2.5, and SO2 (Row 26) demanded up to 4.4
GB of RAM and achieved moderate prediction rates.
In contrast, simpler combinations like CO and NO2
required less RAM (3.3 GB) but exhibited lower pre-
diction rates.

In summary, the combination of CO, NO2, PM2.5,
and SO2 (Row 23) emerged as the most accurate,
achieving the highest R2 and the error metrics, albeit
with increased computational demands. Conversely,
combinations involving NO2 and SO2 exhibited consis-
tently lower performance across all evaluated metrics.

3.2.4. Transformer results

In terms of error metrics, the RMSE ranged from 0.094
to 0.130, and the MAE from 0.068 to 0.099, with the
lowest errors observed for the combination of CO, NO2,
PM2.5, and SO2. Higher errors, particularly in MAE,
were noted for combinations involving CO and SO2,
suggesting these inputs are less effective for accurate
predictions. The MAPE values varied between 18.19%
and 26.83%, with the lowest values associated with
combinations involving O3 and PM2.5, while higher
MAPE values were observed for combinations includ-
ing CO and O3 (Row 2).

Regarding computational efficiency, predictions per
second ranged from 2,974 to 21,030. More complex
combinations with a greater number of input parame-
ters and longer sliding windows required higher RAM
usage (up to 3.7 GB) but achieved faster prediction
rates. Conversely, simpler combinations, such as CO
and NO2 required less RAM (1.8 GB) but exhibited
slower prediction rates. Overall, the combination of
CO, NO2, PM2.5, and SO2 (Row 23) emerged as the
most accurate, achieving the highest R2 and the lowest
error metrics, albeit with increased computational re-
quirements. In contrast, combinations involving NO2
and O3 showed inferior performance across all metrics.

3.2.5. AI model results analysis

When comparing the performance of the RNN, CNN,
LSTM, and Transformer models, the Transformer
model exhibits notably lower accuracy, with R2 values
ranging from 0.322 to 0.640. This broad range un-
derscores significant challenges in capturing the vari-
ability of the output data, particularly when utiliz-
ing variables such as NO2 and O3.While the Trans-
former model demonstrates higher computational ef-
ficiency—requiring 1.8 GB to 3.7 GB of RAM and
achieving prediction rates between 2,974 and 21,030
predictions per second—this efficiency does not offset
its lower predictive accuracy. As illustrated in Figure
12, the scatter plots for the Transformer model reveal
substantial dispersion around the reference line, partic-
ularly at extreme AQI values. This deviation highlights
the model’s unreliability in these situations.

Figure 12. Transformer model predictions combination
23 (Best R2 and RMSE)

The RNN model, while more accurate than the
Transformer, demonstrates intermediate performance
with R2 values ranging from0.533 to 0.576. The RNN
achieves acceptable accuracy, with RMSE values be-
tween 0.092 and 0.097 and MAE values ranging from
0.058 to 0.063. However, its MAPE values, which fall
between 20.48% and 22.92%, are higher than those
observed for the CNN and LSTM models. As depicted
in Figure 13, the RNN scatter plots exhibit a higher
density of points near the y = x line compared to
the Transformer model, suggesting improved overall
alignment with observed values. Nonetheless, signif-
icant dispersion persists at the extreme AQI levels,
highlighting variability in accuracy when predicting
high or low AQI values.

Figure 13. Transformer model predictions combination
10 (Average R2)

In terms of computational efficiency, the RNN ex-
hibits a balanced performance, with RAM usage rang-
ing from 22.8 GB to 23.4 GB and prediction rates
between 20,478 and 43,654 predictions per second.
While not exceptional, this performance positions the
RNN as a viable option, offering a reasonable trade-off
between accuracy and efficiency.
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The CNN model exhibited a higher R2 range of
0.620 to 0.698, demonstrating its strong capability
to capture data variability and provide accurate pre-
dictions. Among the tested combinations, CO, O3,
PM2.5, and SO2 yielded the best performance. The
errors were relatively low, with RMSE values between
0.087 and 0.097 and MAE values ranging from 0.060
to 0.068. Additionally, MAPE values between 15.31%
and 18.83% further underscored the model’s predictive
accuracy. As illustrated in Figure 14, the scatter plots
reveal the CNN model’s ability to deliver consistent
predictions, with a significant clustering of data points
around the regression line, even at extreme values,
thereby minimizing errors. Although the CNN model
is less computationally efficient than the Transformer,
it maintains a reasonable balance, with RAM usage
ranging from 3.8 GB to 4.5 GB and a prediction rate
of 35,805 to 79,091 predictions per second.

Figure 14. Transformer model predictions combination 5
(Worst R2)

The LSTM model demonstrates superior accuracy
among the evaluated models, with an R2 range of 0.669
to 0.701, highlighting its exceptional ability to discern
patterns within the data. It outperforms other mod-
els in error metrics, achieving RMSE values between
0.087 and 0.092 and MAE values ranging from 0.056
to 0.062. Additionally, the LSTM model exhibits the
lowest MAPE values, ranging from 15.31% to 17.31%,
underscoring its remarkable prediction accuracy. As
illustrated in Figure 15, the scatter plots for the LSTM
model reveal a high concentration of data points near
the reference line, with minimal scatter, even for ex-
treme AQI values. This consistency and precision po-
sition the LSTM as a robust and reliable option for
applications where accuracy is critical.

However, the LSTM model is the least computa-
tionally efficient among those evaluated, with RAM
usage ranging from 3.3 GB to 4.5 GB and prediction
speeds between 116 and 8,613 predictions per second.
This relative inefficiency, especially when using longer

sliding windows, may limit its applicability in scenar-
ios where processing speed is critical. Nonetheless, its
exceptional accuracy establishes it as a highly reliable
option for applications where precision takes prece-
dence over computational efficiency.

Figure 15. RNN model predictions combination 21 (Best
R2)

Figure 16. RNN model predictions combination 20 (Aver-
age R2)

Figure 17. RNN model predictions combination 7 (Worst
R2)



70 INGENIUS N.◦ 33, january-june of 2025

Figure 18. CNN model prediction combination 24 (Best
R2)

Figure 19. CNN model prediction combination 18 (Aver-
age R2)

Figure 20. CNN model prediction combination 7 (Worst
R2)

Figure 21. LSTM model prediction combination 23 (Best
R2)

Figure 22. LSTM model prediction combination 9 (Best
R2)

Figure 23. LSTM model prediction combination 14 (Av-
erage R2)
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Figure 24. LSTM model prediction combination 18 (Worst
R2)

3.2.6. Comparison with related studies

This study evaluates the effectiveness of LSTM, GRU,
RNN, CNN and Transformer models for predicting
the Air Quality Index (AQI) in Cuenca, Ecuador, and
compares the results with findings from other relevant
research, such as the study conducted by Cui et al. [36],
which focused on PM2.5 prediction using Transformer
and CNN-LSTM-Attention models in Beijing, China.

A key distinction between the studies lies in the
datasets and their characteristics. This study utilizes
data from a single meteorological station in Cuenca,
comprising 7,425 records for the year 2022. In contrast,
the Beijing study employs data from 12 monitoring
stations collected over four years (2013–2017), total-
ing over 35,000 records. The richer dataset in Beijing
allowed researchers to incorporate seasonal variations
and long-term dependencies, critical factors for accu-
rate PM2.5 prediction.

Additionally, their Transformer model was en-
hanced with multi-head attention mechanisms and
positional encoding, enabling more effective capture
of complex temporal patterns and seasonal fluctua-
tions [36].

Regarding model performance, this study demon-
strates that the LSTM model achieves the highest
accuracy for AQI prediction in Cuenca, with an R2

of 0.701, surpassing the Transformer model’s perfor-
mance, which achieved an approximate R2 of 0.68. Con-
versely, in the Beijing study, the Transformer model
significantly outperformed the CNN-LSTM-Attention
architecture, achieving an R2 of 0.944 compared to
0.836. This superior performance was attributed to the
Transformer’s capacity to handle both abrupt mete-
orological changes and long-term trends, particularly
during complex seasonal transitions such as those ob-
served in autumn and winter [36].

Another notable difference is the prediction horizon.
This study evaluated short- to medium-term prediction

windows (4, 24, and 120 hours), whereas the Beijing
study focused on hourly predictions. The Transformer
model in Beijing proved particularly effective in cap-
turing sudden pollutant variations driven by meteoro-
logical changes, underscoring its suitability for high-
frequency predictions in dynamic environments [36].

These findings underscore the necessity of tailor-
ing AI architectures to the unique characteristics of
specific datasets and prediction objectives. Future re-
search should focus on developing hybrid models that
leverage the complementary strengths of LSTM and
Transformer architectures, aiming to effectively tackle
both local and regional air quality forecasting chal-
lenges.

4. Conclusions

In this study, the performance of various artificial in-
telligence models, including RNN, CNN, LSTM, and
Transformers, was evaluated and compared for the
task of predicting the Air Quality Index (AQI). The
findings reveal that the LSTM model consistently out-
performed the other models, achieving an R2 of 0.701
and an RMSE of 0.087. Its superior performance was
particularly evident when using variable combinations
such as CO, NO2, PM2.5, and SO2.The analysis un-
derscores the LSTM model’s effectiveness in capturing
complex temporal relationships among these variables,
establishing it as a reliable and valuable tool for accu-
rate AQI prediction in diverse scenarios.

Although Transformers models have demonstrated
exceptional performance in various fields such as nat-
ural language processing (NLP) and computer vision
(CV), their application to AQI prediction, particularly
with this specific dataset, reveals significant limitations.
In this study, Transformers exhibited notable variabil-
ity in performance, with coefficients of determination
ranging from 0.322 to 0.640. These findings suggest
that Transformers face challenges in effectively captur-
ing the intrinsic complexity of the analyzed time-series
data, particularly when using variable combinations
that include NO2 and O3. Despite their computational
efficiency, the predictive accuracy of Transformers for
AQI falls short compared to more competitive models
such as LSTM.

In terms of computational efficiency, both CNN
and LSTM models have demonstrated their suitability
for real-time applications, offering an effective balance
between accuracy and resource utilization. The LSTM
model, in particular, stands out for its exceptional pre-
dictive accuracy, efficient RAM usage of approximately
4.4 GB, and its capability to perform a substantial
number of predictions per second. This combination of
high performance and resource efficiency makes LSTM
especially well-suited for air quality prediction sys-
tems that require fast and precise responses, such as
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real-time environmental monitoring applications.
Despite achieving satisfactory R2 values, the anal-

ysis revealed considerable data dispersion and elevated
error metrics across all implementations, rendering
some models unsuitable for reliable deployment. This
study serves as a comparative evaluation of artificial in-
telligence approaches, highlighting both the strengths
and limitations of current AI architectures for AQI
forecasting. The findings underscore the need for refine-
ment in existing implementations while emphasizing
the substantial potential of AI models for improving
air quality predictions in the future.

In conclusion, the training of all models encoun-
tered limitations due to the relatively small size of
the Cuenca dataset and the low correlation observed
between certain pollutants. For future research, we
recommend leveraging larger datasets and extending
the analysis over longer periods to enhance model
performance and generate more robust insights.

4.1. Future directions

The selection of Long Short-Term Memory (LSTM),
Convolutional Neural Networks (CNN), Transformer,
and Recurrent Neural Networks (RNN) architectures
as foundational models in this study was based on
their established prominence in time series analysis
and their significant contributions to advancements in
AI research. Building upon these foundational architec-
tures, future research should explore the incorporation
of enhanced Transformer-based models through the
integration of multi-head attention mechanisms and po-
sitional encoding schemes. These enhancements could
enable more sophisticated modeling of temporal depen-
dencies in air quality patterns. The implementation
of Physics-Informed Neural Networks (PINNs) also
presents a promising direction, as these architectures
explicitly integrate fundamental atmospheric physics
and chemical transport equations into the neural net-
work framework. This approach offers the potential to
bridge the gap between data-driven methodologies and
theoretical models, enhancing the interpretability and
accuracy of predictions. While established architec-
tures such as Transformers, CNNs, RNNs, and LSTMs
have demonstrated notable efficacy, exploring emerging
methodologies like Neural Ordinary Differential Equa-
tions (Neural ODEs), Temporal Fusion Transformers,
and Informer networks could yield even greater pre-
dictive capabilities. These novel approaches, though
less widely adopted in AI research, may address ex-
isting challenges in modeling non-linear atmospheric
dynamics and complex inter-variable correlations, thus
advancing AQI forecasting to new levels of precision
and reliability.
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