Evaluation of Turbulence Models for the Air Flow in a Planar Nozzle

Main Article Content

San Luis Baudilio Tolentino Masgo http://orcid.org/0000-0001-6320-6864

Abstract

In gas flows at supersonic speeds, shock waves, flow separation and turbulence are produced due to sudden changes in pressure. The behavior of the compressible flow can be studied by experimental equipment or by numerical methods with codes of the computational fluid dynamics (CFD). In the present work, the air flow is simulated in a 2D computational domain with the ANSYS-Fluent code version 12.1 for the geometry of a planar nozzle, using the Reynolds averaged Navier-Stokes (RANS) equation, with the objective of evaluating five turbulence models: SST k-?, k-e standard, k-? standard, k-kl-? of transition and RSM. Numerical results of static pressure profiles were obtained for the walls of the nozzle and of the shock wave forms in the flow field, for two conditions of pressure ratios and , which were compared with the experimental data of Hunter's work. It is concluded that the numerical results obtained with the turbulence model SST k- of Menter (1994) are more adjusted to the experimental data of static pressure and shock wave forms.