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Abstract Resumen
This article describes the methodology used to train
and test a Deep Neural Network (DNN) with Pho-
toplethysmography (PPG) data performing a regres-
sion task to estimate the Respiratory Rate (RR). The
DNN architecture is based on a model used to infer
the heart rate (HR) from noisy PPG signals, which
is optimized to the RR problem using genetic op-
timization. Two open-access datasets were used in
the tests, the BIDMC and the CapnoBase. With the
CapnoBase dataset, the DNN achieved a median er-
ror of 1.16 breaths/min, which is comparable with
analytical methods in the literature, in which the best
error found is 1.1 breaths/min (excluding the 8 %
noisiest data). The BIDMC dataset seems to be more
challenging, as the minimum median error of the lit-
erature’s methods is 2.3 breaths/min (excluding 6 %
of the noisiest data), and the DNN based approach
achieved a median error of 1.52 breaths/min with the
whole dataset.

Este trabajo presenta una metodología para entrenar
y probar una red neuronal profunda (Deep Neural
Network – DNN) con datos de fotopletismografía
(Photoplethysmography – PPG), con la finalidad de
llevar a cabo una tarea de regresión para estimar la
frecuencia respiratoria (Respiratory Rate – RR). La
arquitectura de la DNN se ha basado en un modelo
de inferencia de frecuencia cardíaca (FC) a partir
de señales PPG ruidosas. Dicho modelo se ha op-
timizado a través de algoritmos genéticos. En las
pruebas realizadas se han utilizado dos conjuntos de
datos de acceso abierto (BIDMC y CapnoBase). Con
CapnoBase, la DNN ha logrado un error mediano
de 1,16 respiraciones/min, que es comparable con los
métodos analíticos en la literatura, donde el mejor
error es 1,1 respiraciones/min (excluyendo el 8 % de
datos más ruidosos). Por otro lado, el conjunto de
datos BIDMC aparenta ser más desafiante, ya que
el error mediano mínimo de los métodos de la lit-
eratura es de 2,3 respiraciones/min (excluyendo el
6 % de datos más ruidosos). Para este conjunto de
datos la DNN ha logrado un error mediano de 1,52
respiraciones/min
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1. Introduction

Respiratory Rate (RR) is an important indicator of
a person’s physiological state, useful mainly to mon-
itor pulmonary diseases. This physiological signal is
traditionally measured by spirometry, pneumography
or electromyography [1]. These methodologies are in
general expensive and used mostly in medical envi-
ronments. Photoplethysmography (PPG) is a cardiac
signal usually measured using an oximeter, which is
way cheaper than the traditional RR measurement
methods, and recent studies have shown that it can be
captured even remotely using a smartphone camera [2].
As respiration has an influence on the heart cycles, the
RR information is also presented in the PPG signal [3].

Several methodologies in the literature had success
on estimating the RR with a small error from the PPG
signal [1], [4–8], however, attenuating noise is still a
challenge to get robust predictions on low-quality PPG
signals. This paper presents an alternative way to infer
the Respiration Rate from PPG signals. Deep Learning
techniques have been widely used in image problems,
however it’s also a powerful tool in one dimensional
(1D) problems, mainly limited by the size and quality
of the dataset, and also by the computer power in the
training process. As the quantity of data available on-
line growing, as well as the hardware computing power,
DNNs are being tried in a large variety of problems
that before were dominated by analytical procedures.

Regarding the PPG processing, in [1], the authors
showed that a DNN can be used to extract the RR
signal from PPG signals. And in [9], the pulse rate is
extracted from the PPG using a DNN.

This work proposes to use a DNN to extract reliable
RR measurements from PPG signals, by using analyti-
cal approaches to extract secondary signals from PPG
and using DNN to infer the RR.

1.1. Related Work

According to [10] the PPG-RR algorithms can be sum-
marized in five steps:

• Respiratory signal(s) extraction: This step con-
sists of finding variation in the PPG signal re-
lated to the respiration cycles.

• Fusion of respiratory signals: The different sig-
nals extracted can be combined to create a
unique signal with greater noise robustness (op-
tional).

• Estimate the RR from a window: A window of
the generated signal is segmented and the RR is
estimated from it.

• Combine estimations: The result of different win-
dows may be used to generate a final estimation
(optional).

• Quality filtering: A quality score may be assigned
to the PPG window to exclude low-quality pre-
dictions (optional).

Some of the first approaches that estimate RR
from PPG use a highpass and a lowpass second-order
Butterworth filters with cutoff frequencies at 0.1 Hz
and 5 Hz respectively to remove noise from the PPG.
And then the respiratory signal is estimated by ap-
plying a 0.4 Hz lowpass filter on the PPG signal [11].
The authors from [12] applied Singular Value Ratio
(SVR) to extract the respiratory periodicity from the
PPG, and then, they used Principal Component Anal-
ysis (PCA) to estimate the respiratory activity from
the first principal component. In another approach,
proposed by [13], they captured a PPG signal using
the smartphone camera, and then the RR was esti-
mated by finding the frequency corresponding to the
highest peak on the spectrum generated by the Welch
periodogram [7].

In [4], five different methodologies were compared
(including their own). The oldest one was proposed
in [14], and consists in apply a 16th degree Bessel band-
pass filter with cutoff frequencies of 0.13 Hz and 0.48
Hz (7.8 to 28.8 breaths/min). The second was proposed
by [8], which consists in use a Fourier transform on
the PPG signal and get the frequency with the highest
amplitude in the bandwidth from 0.08 Hz to 0.4 Hz.
In the methodology proposed by [5], auto-regressive
(AR) models estimate a filter using the PPG signal,
and, according to them, the frequency of the highest
magnitude pole, inside the range of the RR bandwidth
(0.08 Hz to 0.7 Hz), corresponds to the RR. Instead of
using the PPG itself, in [6] three RR-related temporal
features are estimated from it: Respiratory-Induced
Intensity Variation (RIIV), Respiratory-Induced Am-
plitude Variation (RIAV), and Respiratory-Induced
Frequency Variation (RIFV). Then, the power spec-
trum of each one is calculated and the RR is estimated
by each one by taking the highest amplitude frequency
in the RR frequency-band (0.067 Hz – 1.08 Hz) and
calculating the mean of the three frequencies. Finally,
the methodology proposed by [4] combines the AR
modeling, proposed in [5] with the fusion of results of
the three features proposed by [6].

The results presented in [4] show that for the Cap-
noBase dataset [15] the method that presented the
lowest error was the method from [6] with a Median
Absolute Error (MdAE) of 0.8 breaths/min using a
62 s window, however, 46 % of the PPG data were
excluded due to noise. The second best in this dataset
was the method from [5], which achieved a MdAE
of 1.1 breaths/min and kept 92 % of the data. The
BIDMC dataset appears to be more challenging, since
the best MdAE was achieved by the method proposed
by [8] (2.3 breaths/min), which was also one of the
methods that kept most of the data (94 %).
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A recent work has achieved even more accurate
results [16], in which a method derives multiple wave-
forms from the PPG signal, and their quality are mea-
sured and then used as a weight to combine them using
a Kalman Smoother. With this approach they achieved
a median error of 0.2 breaths/min.

1.2. Deep Neural Networks (DNN)

According to [17], Deep Learning is an approach that
can handle an important step in a machine layer prob-
lem: the features extraction. Its concept consists of
concatenating multiple layers of simple models, where
each model “learns” part of the problem-concepts, and
so, a complex problem can be split into simpler ones to
be better solved. An interesting point of this approach
is that it performs the machine learning (classification,
regression, clustering, etc.) and also the feature ex-
traction part of the problem, in contrast with shallow
techniques, in which the feature extraction step has to
be done separately, in a previous stage, and demands
domain knowledge. The limitation of the Deep Learn-
ing approach is the dataset. Normally, Deep learning
models have a large number of weights to be adjusted,
so, it needs a large amount of data to optimize them.

There are already some approaches that imple-
mented Deep Learning techniques to solve problems
related to physiological data. In [9], a DNN was imple-
mented to estimate the Heart Rate (HR) having a PPG
signal from a sensor worn on the user’s wrist as input
data. The model was tested with a challenging dataset,
in which, the PPG signal was captured during various
physical activities, which inserts noise and artifacts on
it. The architecture of the model consisted of two 1-D
convolutional layers followed by two Long Short-Term
Memory (LSTM) layers and finally a dense layer at
the end, and it reached a Mean Absolute Error (MAE)
of 1.47 ± 3.37 Beats Per Minute (BPM).

A Deep Learning approach to extract the RR signal
from the PPG is presented in [1]. Their model consists
of several convolutional layers connected to several
deconvolutional layers that transform the PPG signal
into a respiratory signal, and then they calculate the
RR from it. Their method was tested in two indepen-
dent datasets, the CapnoBase and the Vortal [18] and
reached a Mean Squared Error (MSE) of 0.262 in the
first dataset and an error of 0.145 in the second one
(which corresponds to a Root Mean Squared Error
(RMSE) of approximately 3.1 breaths/min and 2.3
breaths/min respectively).

2. Materials and methods

2.1. Datasets

Two datasets were used in the tests: the CapnoBase
benchmark dataset [15] and the BIDMC PPG and

Respiration Dataset [19]. The CapnoBase benchmark
dataset [20], contains 42 recordings, with 8 min each,
containing the PPG and the inhaled and exhaled
carbon-dioxide (CO2) signal, both collected with a
sampling frequency of 300 Hz. The BIDMC PPG and
Respiration Dataset [21], contains 8 min PPG and CO2
breath signal recordings from 53 volunteers collected
at 125 Hz.

2.2. Photoplethysmogram Respiratory Fea-
tures

Three signals related to the respiration were generated
from PPG [6]:

1. Respiratory-Induced Intensity Variation (RIIV):
As the amplitude of the PPG signal varies in syn-
chrony with the respiratory cycle, this feature
can be used to estimate the RR [3]. This series is
estimated by taking the intensity value of each
peak in the PPG signal [4].

2. Respiratory-Induced Amplitude Variation
(RIAV): The breath-cycles induce an amplitude-
variation in the PPG waves, which can be es-
timated by calculating the variation in the
peak-valley difference in the PPG waves [6].

3. Respiratory-Induced Frequency Variation
(RIFV): The HR variation is also highly linked to
the inspiration and expiration events of breath-
ing. The inspirations increase the HR and the
expiration decreases it. This signal may be repre-
sented by the time interval between consecutive
PPG peaks [6].

A graphic representation of the RIIV, RIAV and
RIFV features is presented in Figure 1.

RIIV

RIFV
RIAV

Figure 1. Extracted RR-related PPG features

2.3. Signal Quality Index (SQI)

The SQI quantifies the noise and artifact contami-
nation in the analyzed PPG window. This index is
used to exclude signals that do not reach a minimum
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quality. In this work, the SQI is calculated targeting
two points: “flat-lines” in the signal, and concordance
between different peak detectors [4]. The “flat-lines”
are defined as part of the PPG signal in which the
difference between consecutive samples is near to zero.
To detect it, the following method was performed:

1. Calculate the StdDiff signal as follows:
StdDiff [i−wdw] = σ(diff(PPG[i−wdw : i])),
for i = wdw, wdw + 1, wdw + 2, ....., N .
Where σ(.) is the standard deviation operation,
diff(.) is the first derivative operation, PPG
is the PPG signal, wdw is the window length,
that, in the case, is the integer part of 1.5 s ×
frequency sample (1.5 s is the time interval be-
tween consecutive peaks on the minimum HR
value, which is normally 40 BPM), and N is the
number of samples in the PPG signal.

2. Initialize the Q array with ones and the same
size as PPG: Q = ones(N)

3. Calculate the threshold value: th =
µ(StdDiff) − α × σ(StdDiff)), where µ(.)
is the mean operation and α is an adjustable
parameter.

4. Set the values of k to zero in the corresponding
locations where StdDiff is too low:
for i = wdw, wdw + 1, wdw + 2.....N : {

if (StdDiff [i − wdw] < (th) : {
Q[i + wdw] = 0

}}

5. The value of K is the proportion of one values
in Q inside the analyzed PPG window, over the
total size of it.

The concordance between the two peak-detectors
was performed as following: if the difference between
the position found by the detectors on the same peak is
smaller than 150 ms, it is set that both detectors agree
on that peak, therefore its position is correct, other-
wise, the peak is considered a noise [4]. An F1-score
is then applied to measure the concordance between
the two peak-detectors on the analyzed segment of the
signal. The peak detection methods were provided by
two different 20 libraries: the Neurokit2 [22], which
implements the PPG peak detection algorithm pro-
vided in [23] and the Heartpy library [24], in which
the authors implemented their own peak detection
technique.

Finally the SQI is computed as: SQI = F1 × K,
where F1 is the concordance between peaks and K is
the “flat-line” proportion.

2.4. DNN Architecture

The architecture of the model was inspired on the
CorNET [9], which has two convolution blocks, each
containing a convolution layer (32 filters with a kernel
size of 40), a batch normalization layer, a Rectified
Linear Unit (ReLU) activation layer, and finally a max-
pooling layer with a pool size of 4 (a Dropout layer
with a drop rate of 0.1 was used for training). After the
convolution blocks two LSTM layers are concatenated,
each one with 128 units and the hyperbolic tangent
(tanh) activation function. To predict the HR a single
neuron with linear activation is used.

The architecture proposed to predict the RR is a
result of genetic optimization on the CorNET’s pa-
rameters presented in Table 1. There is always an
additional dense layer with one neuron with linear
activation at the end of the model.

Table 1. Parameters tried in the DNN architecture

Parameter Possibilities
# of convolution blocks 0/1/2
# of convolution filters/layer 128/64/32
Length of convolution filters 11/21/31
# of LSTM layers 1/2/3
# of LSTM units/layer 128/64/32
# of dense layers 0/1/2
# of neurons/layer 128/64/32/16

The parameters above are optimized, while the
non-cited parameters are used as defined by default in
the Keras library [25]. As the number of combinations
is very large (2916), the parameters are optimized via
genetic optimization. This strategy starts by defining
a population of L models with random parameters and
then all models are trained, tested, and sorted by the
result. The M models with the best performance are
kept while the others are discarded. The kept mod-
els set is called parents, then M − J new models are
generated by taking values of three different models
(one parent for the convolution parameters, one parent
for the LSTM, and one for dense). Also, there is a
chance of H % that the parameters of the new models
change randomly (these changes are called mutations),
these new models are called offspring. There is also
generated J new completely random models. We give
this set the name of foreigners. Then the parents,
offspring and foreigners sets are united and a new
interaction starts. The procedure is repeated for E
epochs. The idea is that the parameters that decrease
the estimation error will prevail in the parents set,
and their combination may generate a model on the
offspring set that overcomes its parents’ result. Also,
new random parameters are inserted with the muta-
tion and the foreigners set at each iteration. These
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random additions give a chance for the population of
models to get out of a sub-optimal local minimum.

For this experiment, the parameters of the genetic
optimization were: L = 45, M = 20, J = 5, E = 20
and H = 20, this reduced the number of trained models
from 2916 to 520 (25 new models/epoch × 20 epochs
+ the first 20 parents). And the best model found is a
DNN with 2 convolution blocks with 32 filters and one
MaxPooling-1D (kernel size of 2) on each convolution
layer, a kernel size of 21, and ReLU activation. Then,
one LSTM layer with 32 neurons, and finally, 2 dense
layers, one with 32 neurons and ReLU activation and
the last one with one neuron and linear activation. A
summary of the final DNN architecture is presented
on Figure 2.

Figure 2. Selected Neural Network architecture

2.5. Training and Testing Procedure

To train and evaluate the model two datasets were
used: the BIDMC [19] and the CapnoBase [15] datasets.
The cross-validation method with four groups were
used: for each database, their files were split into four
groups, each group containing 25% of the data of each
dataset. Then, the same procedure was performed on
each group: first, the PPG peaks were found using the
Neurokit2 library [22]. Then using a sliding window
of 64 s with step of 4 s, the three RR-related signals
(RIIV, RIAV, and RIFV) were computed from it and
then they were interpolated to an artificial sampling
frequency of 4 Hz and the first 240 samples. As the
peak will probably not start at the beginning and the
end of the window, the interpolated signal may variate
between 61 s to 64 s. (60 s) were extracted from the
window generating a sample with 240 lines (temporal
steps) and 3 columns (one for each: RIIV, RIAV, and
RIFV). The final step is to normalize the data so each
channel of the new sample has mean 0 and variance
1: Y = (X − µ(X))/σ(X), where Y is the normalized
series, X the input series, µ(.) is the mean operation
and σ(.) is the standard deviation operation.

To get the reference value of RR, the peak of the
CO2 correspondent signal of each sample is located
using the Respiration module of Neurokit2 and then,
the Median RR of the 64 s sample is calculated by

taking the inverse of the median value of consecutive
peaks time-interval.

The four groups of normalized samples are then
split into the training and testing sets, where the train-
ing set has 3 groups and the test has 1. The training
and testing procedures were repeated four times, so
each group could be evaluated in the test set once.
Each of the 4 models (one for each test group) was
trained for 1400 epochs using the Adam optimizer
with standard parameters from Keras [25]. The pro-
cessing was made on a Ryzen 5 3500X computer with
16 GB of RAM memory and a NVIDIA GeForce RTX
2060 SUPER with 8 GB dedicated memory. The Mean
Squared Error (MSE) metric was used to compute the
loss for each epoch. The loss curve result is presented
in Figure 3.

Figure 3. Ts curve of the 4 instances of the network

The validation groups 1 and 4 had a loss decreas-
ing until epoch 1400, the validation group 2 has it’s
minimum loss near the epoch 400 and validation group
3 had a minimum around epoch 200, them it decreased
again after epoch 800. The graph was used to deter-
mine the number of epochs to train the DNNs, as half
of the Validation groups still decreasing until epoch
1400 and the dropout layers seems to prevent overfit-
ting on the other groups, since the loss do not increase
to much after the minimums. We repeated the pro-
cess shuffling the data and the groups, and training 4
DNNs (one for each train-test group) for 1400 epochs
to perform the cross validation.

3. Results and Discussion

The Median Absolute Error (MdAE) and the standard
deviation of the error (STD) for each dataset are pre-
sented in Table 2 and Table 3, as well as are presented
the Root Mean Squared Error (RMSE), and the SQI
threshold used to filter noisy samples. By testing dif-
ferent SQI values, it is possible to analyze the influence
of the signal quality on the result.
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Table 2. Error measurements of the DNN based RR pre-
diction

BIDMC dataset

SQI N MdAE STD RMSE
(%) (bts/min*) (bts/min) (bts/min)

0.90 87 1.39 6.55 6.59
0.93 80 1.39 6.57 6.62
0.97 66 1.26 6.51 6.55
1.00 37 1.04 4.47 4.47
0.00 100 1.52 6.86 6.94
* bts/min is equal to breaths/min

The MdAE results achieved by our model on the
CapnoBase dataset are compatible with the ones from
the best methodologies compared in [4], in which, the
best MdAE for a 64 s window was 0.8 breaths/min,
achieved using [6] method. However, the methodology
excludes 36 % of samples that do not achieve the min-
imum SQI. The second best was the method from [5],
achieving a MdAE of 1.1 breaths/min for 92 % of the
best samples. For the same dataset, our method got
a MdAE of 1.16 breaths/min (calculated concatenat-
ing the results of all four tests), and a MdAE of 1.11
breaths/min with 93% of the highest SQI samples.
However, the RMSE of the proposed DNN model did
not reach the error from the RespNET [1], which is
3.1 breaths/min, indicating that our model can still
be refined to achieve better results.

Table 3. Error measurements of the DNN based RR pred-
ition

CapnoBase dataset

SQI N MdAE STD RMSE
(%) (bts/min*) (bts/min) (bts/min)

0.90 98 1.16 5.93 5.94
0.93 97 1.16 5.94 5.95
0.97 93 1.11 5.65 5.66
1.00 73 1.06 4.46 4.97
0.00 100 1.16 5.88 5.90
* bts/min is equal to breaths/min

The proposed DNN model scored smaller errors on
the BIDMC dataset than all other methods compared
in [4]. With all samples, our method got a MdAE of
1.52 breaths/min in this dataset, while the smallest
error found for this dataset in [4], was the methodol-
ogy proposed by [8], with a MdAE of 2.3 breaths/min.
This improvement in result shows the success in DNN
methods to process physiological data. Where, with a
dataset large enough and the right complexity, impor-
tant information can be extracted from the data while
noise and artifacts are discarded.

It is also notable in Table 2 and Table 3 that the
MdAE by itself does not measure a good result. Besides
having a low MdAE the results present a considerable
RMSE, as it reinforces highly variation results and

the median computation does not take into account
how much the extreme results deviate from the desired
value, only the middle value(s) is(are) computed. This
can be observed in the scatter plot of the predictions
and true values presented in Figure 4, and Figure 5.
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Figure 4. Scatter plot of the RR predictions and the true
values of the CapnoBase dataset. The samples ploted have
a SQI over 0.9
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Figure 5. Scatter plot of the RR predictions and the true
values of the BIDMC. The samples ploted have a SQI over
0.9

To better compare the performance of our method
against the researched literature, a summary of the
results of each method is presented in Table 4. The
best result presented in the Capnobase dataset was the
method proposed by [16], which reached a MdAE of 0.2
breaths/min, whereas the previous benchmark meth-
ods on the same dataset achieved a minimum MdAE of
0.8 breaths/min (excluding 36% of the noisiest data).
Our method, using the whole data, achieved a MdAE
of 1.2 breaths/min. The BIDMC database seems more
challenging, as the methods tested on this dataset pre-
sented a minimum MdAE of 2.3 breaths/min, and our
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method achieved a MdAE of 1.5 breaths/min. The
authors from [16] did not used de BIDMC dataset in

their study, so, we are not able to compare the results
with their method in this dataset.

Table 4. Error measurements of different methods presented in the literature. N is the percentage of PPG windows
used, median absolute error (MdAE) and 25th and 75th percentiles (25TH - 75TH) Root Mean Squared Error (RMSE)
and Mean absolute error (MAE) and Standard deviation (STD)

Dataset
Capnobase BIDMC

Method N
(%)

MdAE
(25TH - 75TH) RMSE MAE

(STD)
N

(%)
MdAE

(25TH - 75TH) RMSE MAE
(STD)

Proposed 100 1.2 (0.4-3.4) 5.9 3.1 (5.0) 100 1.5 (0.6-3.6) 6.9 3.4 (6.0)
Khreis
(2020) 100 0.2 (0.1-0.9) - - - - - -

Ravichandra
(2019) - - 3.1 - - - - -

Pimentel
(2017) 92 1.9 (0.3-3.4) - - 94 2.7 (1.5-5.3) - -

Shelley
(2016) 92 2.2 (0.2-8.3) - - 94 2.3 (0.9-7.9) - -

Karlen
(2013) 64 0.8 (0.3-2.7) - - 34 5.7 (1.5-9.7) - -

Fleming
(2007) 92 1.1 (0.4-3.5) - - 94 5.5 (2.7-8.1) - -

Nilsson
(2000) 92 10.2 (4.8-12.4) - - 94 4.6 (2.5-8.5) - -

4. Conclusions

This work presents a methodology to use a DNN
approach to estimate RR using PPG signals. The
model was inspired in a previous successful architec-
ture, which was optimized to our problem using an
adapted genetic optimization. The inputs to the DNN
are three RR-related respiratory signals extracted from
the PPG, and the output is the corresponding RR-
value. To test the methodology the files of two open-
access datasets were split into 4 folds, keeping the
same proportion of each dataset files in each folder.
A training-test procedure was repeated 4 times each
one with 3 folds for training and 1 for testing, so every
fold was used once as a test. The results achieved are
comparable with the most of the benchmark analytical
methodologies using the CapnoBase dataset, and the
DNN overcame them in the more challenging BIDMC
dataset, showing the success of the methodology to
process physiological data.

Although successful, the performance of analytical
methods is usually accompanied by heuristic thresholds
or a large number of expertly-tuned free parameters,
which could prevent generalization of the developed
methodologies. However, DNN approaches are designed
to generalize the data as much as possible and to have
as less as preprocessing as possible.
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