Robotics amphibious salamander with bio-inspired locomotion

Main Article Content

Wilbert G. Aguilar
Marco A. Luna
Julio F. Moya
Vanessa Abad


This paper presents the development of an amphibious robot with a motion dynamics bioinspired on the locomotion of the salamander (Cryptobranchidae). The robot is teleoperated by an application for handled devices. We propose a structure to perform two different motions: walk and swim. We extract the movements from a real salamander by a zenith camera, and a locomotion control algorithm is designed to reply this movements. We evaluate the performance of the robot in comparison with the real animal movements using the RMSE (Root Mean Square Error) as metric of evaluation. We obtain errors less than 5 % in the angles of backbone movement.
Abstract 492 | PDF (Español (España)) Downloads 552 HTML (Español (España)) Downloads 823


[1] R. Breithaupt, J. Dahnke, K. Zahedi, J. Hertzberg, and F. Pasemann, “Robo-Salamander–an approach for the benefit of both robotics and biology,” Proc. Fifth Int. Conf. Climbing Walk. Robot. their Support. Technol. CLAWAR 2002, 25-27th Sept. 2002, p. 55, 2002.

[2] A. W. G and C. Angulo, “Compensación de los Efectos Generados en la Imagen por el Control de Navegación del Robot Aibo ERS 7,” Memorias del VII Congr. Cienc. y Tecnol. ESPE 2012, no. JUNE, pp. 165–170, 2012.

[3] W. G. Aguilar and C. Angulo, “Compensación y Aprendizaje de Efectos Generados en la Imagen durante el Desplazamiento de un Robot,” in X Simposio CEA de Ingeniería de Control, 2012.

[4] W. G. Aguilar and C. Angulo, “Robust video stabilization based on motion intention for low-cost micro aerial vehicles,” in Multi-Conference on Systems, Signals Devices (SSD), 2014 11th International, 2014, pp. 1–6.

[5] W. G. Aguilar and C. Angulo, “Estabilización de vídeo en micro vehículos aéreos y su aplicación en la detección de caras,” Memorias del IX Congr. Cienc. y Tecnol. ESPE 2014, pp. 155–160, 2014.

[6] R. Pfeifer, M. Lungarella, and F. Iida, “Self-organization, embodiment, and biologically inspired robotics.,” Science, vol. 318, no. 5853, pp. 1088–1093, 2007.

[7] A. J. Ijspeert, A. Crespi, and J.-M. Cabelguen, “Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots,” Neuroinformatics, vol. 3, no. 3, pp. 171-195, 2005.

[8] D. R. Carrier, “Action of the hypaxial muscles during walking and swimming in the salamander Dicamptodon ensatus,” J. Exp. Biol., vol. 180, no. 1, pp. 75-83, 1993.

[9]M. a Ashley-Ross and G. V Lauder, “Motor patterns and kinematics during backward walking in the pacific giant salamander: evidence for novel motor output.,” J. Neurophysiol., vol. 78, pp. 3047-3060, 1997.

[10] A. Crespi, “Design and control of amphibious robots with multiple degrees of freedom,” 2007.

[11] J. Monsalve, J. Leon, and K. Melo, “Modular snake robot oriented open simulation software,” in 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, IEEE-CYBER 2014, 2014, pp. 546-550,

[12] P. Liljebäck, S. Fjerdingen, K. Y. Pettersen, and Ø. Stavdahl, “A snake robot joint mechanism with a contact force measurement system,” in Proceedings - IEEE International Conference on Robotics and Automation, 2009, pp. 3815-3820,

[13] N. Kamamichi, M. Yamakita, K. Asaka, and Z. W. Luo, “A snake-like swimming robot using IPMC actuator/sensor,” in Proceedings - IEEE International Conference on Robotics and Automation, 2006, vol. 2006, pp. 1812-1817.

[14] S. Yu, S. Ma, B. Li, and Y. Wang, “An amphibious snake-like robot with terrestrial and aquatic gaits,” in Proceedings - IEEE International Conference on Robotics and Automation, 2011, pp. 2960-2961.

[15] K. Hirata, “Development of Experimental Fish Robot,” Sixth Int. Symp. Mar. Eng., no. 650, pp. 711-714, 2000,

[16] F. W. Grasso, T. R. Consi, D. C. Mountain, and J. Atema, “Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges,” Rob. Auton. Syst., vol. 30, no. 1, pp. 115-131, 2000,

[17] U. Saranli, “RHex: A Simple and Highly Mobile Hexapod Robot,” Int. J. Rob. Res., vol. 20, pp. 616–631, 2001.

[18] a. S. Boxerbaum, P. Werk, R. D. Quinn, and R. Vaidyanathan, “Design of an autonomous amphibious robot for surf zone operation: part i mechanical design for multi-mode mobility,” Proceedings, 2005 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, pp. 24-28, 2005.

[19] S. Guo, S. Mao, L. Shi, and M. Li, “Design and kinematic analysis of an amphibious spherical robot,” in 2012 IEEE International Conference on Mechatronics and Automation, ICMA 2012, 2012, pp. 2214-2219.

[20] T. Horvat, “Control of a Salamander-Like Robot for Search and Rescue Applications,” pp. 1-8.

[21] A. Crespi, K. Karakasiliotis, A. Guignard, and A. J. Ijspeert, “Salamandra Robotica II: An amphibious robot to study salamander-like swimming and walking gaits,” IEEE Trans. Robot., vol. 29, no. 2, pp. 308-320, 2013.

[22] A. Crespi and A. J. Ijspeert, “Salamandra Robotica: A biologically inspired amphibious robot that swims and walks,” in Artificial Life Models in Hardware, 2009, pp. 35-64.

[23] W. G. Aguilar and S. Morales, “3D Environment Mapping Using the Kinect V2 and Path Planning Based on RRT Algorithms,” Electronics, vol. 5, no. 4, p. 70, 2016.

[24] W. G. Aguilar and C. Angulo, “Real-Time Model-Based Video Stabilization for Microaerial Vehicles,” Neural Process. Lett., vol. 43, no. 2, pp. 459–477, 2016.

[25] W. G. Aguilar and C. Angulo, “Real-time video stabilization without phantom movements for micro aerial vehicles,” EURASIP J. Image Video Process., vol. 2014, no. 1, p. 46, 2014.

[26] Shutterstock, "Salamander walks across white surface, shot from above", in Vibe Images, [En línea]. Disponible en: