Incentive pertaining to energy the generation distributed in Ecuador

Main Article Content

Jorge Patricio Muñoz-Vizhñay http://orcid.org/0000-0003-1293-5017
Marco Vinicio Rojas-Moncayo http://orcid.org/0000-0002-1338-0095
Carlos Raúl Barreto-Calle http://orcid.org/0000-0002-4886-2887

Abstract

Reducing solar infrastructure costs is one of the main reasons for its global growth. In Ecuador adjustments to the legal framework have to be made to encourage the installation of small photovoltaic solar structures for electricity customers connected to low voltage distribution networks for their personal consumption, and any surplus energy be injected into the grid. Three business models pertaining to the distributed microgeneration of PV have been considered, which consider two applicable measurement systems: the first one is called "net metering" where the net value of the energy (the difference between the one injected into the network and the one consumed) is determined, and the second known as "Feed-in Tariff" - FIT is where the energy injected into the grid is set at a special incentive price. The cost of energy produced by a photovoltaic system in Ecuador is USD / kWh 0.1342 with a discount rate 7\%, CF (capacity factor) at 15\%, while a discount rate 10\%, CF at 20\% the cost reduces to USD / kWh 0.1229. These values however, do not take into account the bank of batteries or the land, these values are increasingly more competitive in relation to non-conventional renewable sources.
Abstract 792 | PDF (Español (España)) Downloads 3289 HTML (Español (España)) Downloads 828 PDF Downloads 320

References

Tesis:

[1] J.A. Aguilera, “Fuentes de Energía y Protocolo de Kioto en la Evolución del Sistema Eléctrico Español”, Tesis Doctoral, Departamento de Energía, Universidad de Oviedo, Oviedo Paulo, 2012.

[2] T. Vindel, “Uma Proposta de Integração da Geração Distribuida, por meio das Usinas Virtuais, ao Sistema Elétrico do Estado de São Paulo”, Dissertação de Mestrado em Ciências, Programa de Pós Graduação em Energía, Universidade de São Paulo, São Paulo, 2016.

[7] G. Andrade, “Metodología de Aplicação de Geração Distribuída Fotovoltaica em Baixa Tensão nos reticulados Subterraneos das Distribuidoras de Energia Elétrica”, Dissertação de Doutorado em Ciências, Programa de Pós Graduação em Energía, Universidade de São Paulo, São Paulo, 2014.

[8] R. Silva, “Caracterização da Geração Distribuída de Eletricidade por Meio de Sistemas Fotovoltaicos Conectados à Rede, No Brasil, sob os Aspectos Técnico, Econômico e Regulatorio”, Dissertação de Mestrado, Programa de Pós Graduação em Energía, Universidade de São Paulo, São Paulo, 2009.

[10] A. Carvalho, “Avaliação dos Impactos de Sistemas Fotovoltaicos Conectados à Rede de Distribuição de Baixa Tensão”, Dissertação de Doutorado em Ciências, Programa de Pós Graduação em Energía, Universidade de São Paulo, São Paulo, 2016.

[11] M. Pinho, “Qualificação de Sistemas Fotovoltaicos Conectados à Rede”, Dissertação de Mestrado, Programa de Pós Graduação em Energía, Universidade de São Paulo, São Paulo, 2012.

[16] S. Kileber, “A Competitividade das Fontes Energéticas em uma Abordagemde Learning Curves: Uma Proposição de Regulação que Incentive as Tecnologias Renováveis”, Dissertação de Doutorado em Ciências, Programa de Pós Graduação em Energía, Universidade de São Paulo, São Paulo, 2016.

Recursos de Internet:

[3] IEA (International Energy Agency) ”Key World Energy Statistics” [online]. París, 2017. Disponible en (http://www.iea.org/publications/freepublications/publication/KeyWorld_Statistics_2015.pdf).

[4] BP Statistical Review of World Energy http://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf.

[5] IRENA (International Renewable Energy Agency) ”Estadística de Energía Renovable 2017” [online]. Masdar City, 2017. Disponible en (http://www.irena.org/DocumentDownloads/Publications/IRENA_Renewable_Energy_Statistics_2017.pdf).

[6] OLADE (Organización Latinoamericana de Energía). “Atlas Solar del Ecuador con Fines de Generación Eléctrica” [online]. Quito, 2008. Disponible en (http://biblioteca.olade.org/opac-tmpl/Documentos/cg00041.pdf).

[9] IRENA (International Renewable Energy Agency) ”Boosting Solar PV Markets: The Role of Quality Infrastructure” [online]. París, 2017. Disponible en (http://www.irena.org/DocumentDownloads/Publications/IRENA_Quality_Infrastructure_for_Solar_PV_2017.pdf).

[12] IRENA (International Renewable Energy Agency) ”Renewable Energy Benefits Leveraging Local Capacity for Solar PV” [online]. Abu Dhabi, 2017. Disponible en (http://www.irena.org/DocumentDownloads/Publications/IRENA_Leveraging_for_Solar_PV_2017_summary.pdf).

[13] IRENA (International Renewable Energy Agency) ”Adapting Market Design to High Shares of Variable Renewable Energy” [online]. París, 2017. Disponible en (http://www.irena.org/DocumentDownloads/Publications/IRENA_Adapting_Market_Design_VRE_2017.pdf).

[14] CONELEC (Consejo Nacional de Electricidad), Normativa, Nacionales, Regulaciones. [online]. Disponible en http://www.conelec.gob.ec/normativa_detalle.php?cd_norm=753.

[15] WEC (World Energy Council). “World Energy. Issues Monitor 2017” [online]. United Kingdom, 2017. Disponible en (https://www.worldenergy.org/wp-content/uploads/2017/04/1.-World-Energy-Issues-Monitor-2017-Full-Report.pdf).

[17] WEC (World Energy Council). “World Energy Perspectives. Renewables Integration 2016” [online]. United Kingdom, 2016. Disponible en (https://www.worldenergy.org/wp-content/uploads/2016/09/Variable-Renewables-Integration-in-Electricity-Systems-2016-How-to-get-it-right-_-Full-Report-1.pdf).