Obtención de ACS con energía solar en el cantón Cuenca y análisis de la contaminación ambiental

Main Article Content

John Calle - Sigüencia http://orcid.org/0000-0002-2148-3297
Oscar Tinoco - Gómez http://orcid.org/0000-0002-2548-2160

Abstract

This document contains the analysis to determine the feasibility of implementing solar water heaters to obtain Sanitary Hot Water (SHW) in Ecuador, in the province of Azuay, in the canton of Cuenca, in order to reduce environmental pollution caused by the use of fossil fuels. The project considers the implementation of a meteorological network and data collection of global solar radiation in 16 points located populated areas of the Canton during the years 2014 and 2015, later through a field work a diagnosis is made to establish which are the systems Currently used to obtain SHW, the efficiencies of two types of solar vacuum tube heaters for SHW production are also analyzed theoretically and practically; with the measured radiation data, it is modeled applying the heat transfer equations and the feasibility of implementation is established based on the measured solar energy; Finally, a comparison is made to determine what would be the decrease of CO2 emissions if the implementation would be carried out. The results obtained indicate that 82% of families use SHW and of these 65% use LPG-based systems and that 44% of the energy demand to obtain SHW can be covered with solar energy, using auxiliary systems to guarantee a constant supply. The implementation of these systems would reduce 108537 tn CO2 eq per year.
Abstract 505 | PDF (Español (España)) Downloads 359 HTML (Español (España)) Downloads 605 PDF Downloads 56

References

[1] Eurobserver, «Solar Thermal and Cocentrated Solar Power Barometers,» Eurobserver, ., 2017.
[2] F. Entrena, UF02012: Determinación del potecial solar, Malaga: ic editorial, 2013.
[3] J. G. Rios, «SCRIBD,» 2016. [En línea]. Available: https://es.scribd.com/doc/147294050/METODOS-PARA-CALCULAR-LA-POBLACION-FUTURA. [Último acceso: 18 diciembre 2016].
[4] R. Sampieri, C. Fernandez y M. Baptista, Metodología de la Investigación, 5 edición ed., Mexico: McGraw_Hill, 2010, p. 656.
[5] Estrategia Aragonesa de cambio climatico y energías limpias, Fondo Europeo de desarrollo regional; Gobierno de Aragon, Cámaras de Aragón, «Calculador de emisiones,» 16 junio 2017. [En línea]. Available: https://www.camarazaragoza.com/wp-content/uploads/2012/10/calculoemisiones.xls.
[6] J. G. Martinez Aguirre, «Caracterización y análisis estadístico de la Radiación solar directa para aplicaciones de Media y alta temperatura en areas circundantes a la OCP,,» Quito, 2015.
[7] J. Jimenez, H. Llivichuzca y J. Calle, Diseño, implementación y monitoreo de calentadores híbridos con energía solar - GLP y energía solar - calentadores electricos para la obtención de agua caliente sanitaria., Cuenca, Azuay, 2014.
[8] J. A. Duffie y W. Beckman, Solar Engineering of thermal processes, USA: Hoboke N.J., 2006.
[9] Afta-asociacion, «Afta-asociacion,» 26 noviembre 2017. [En línea]. Available: http://www.afta-asociacion.com/wp-content/uploads/Cap-4-Dimensionado-de-Instalaciones.pdf.
[10] C. D. Fuente, «Instalación de Colectores solares para suministro de ACS en Valencia,» Madrid, 2009.
[11] CTE y M. d. F. España, «Código Técnico de la Edificación de España,» junio 2017. [En línea]. Available: https://www.codigotecnico.org/images/stories/pdf/ahorroEnergia/DBHE.pdf.