Functionalized enamel of ceramic tiles by sol gel technique (review)

Main Article Content

Santiago Betancourt-Parra http://orcid.org/0000-0003-4474-2447
Manuel A. Domínguez-Ortiz http://orcid.org/0000-0003-2167-7400
Diana M. Mosquera-Palacio http://orcid.org/0000-0003-0401-3557
Juliana Herrera-Guerra http://orcid.org/0000-0002-5636-7210
Carlos M. Ríos-Rendón http://orcid.org/0000-0001-6816-4296
Carlos E. Villa http://orcid.org/0000-0002-4971-689X

Abstract

Functionalized enamels for the ceramic tile industry has been a research topic since the past 15 years. Different researchers have focused their efforts on achieving surfaces with functional attributes that increase product value and provide technical solutions for the technological needs of our times. This article presents a review of the scientific literature dedicated to obtaining functional surfaces by means of a sol gel technique, that provides a means for deposition and formation of thin layers on traditional ceramic enamels in order to provide functional characteristics. The document presents: typical used alcoxidic solutions, the different deposition techniques emphasizing the experimental findings obtained by the authors, and presents a synthesis of the functional effects obtained by means of the technique.
Abstract 840 | PDF (Español (España)) Downloads 460 HTML (Español (España)) Downloads 187 PDF Downloads 100 HTML Downloads 93

References

[1] O. J. Restrepo Baena, Baldosas cerámicas y gres porcelánico: un mundo en permanente evolución, C. E. F. de Minas, Ed. Universidad Nacional de Colombia, Sede Medellín, 2011. [Online]. Available: https://goo.gl/sSTprJ
[2] L. Fröberg and L. Hupa, “Topographic characterization of glazed surfaces,” Applied Surface Science, vol. 254, no. 6, pp. 1622–1629, 2008. [Online]. Available: https://doi.org/10.1016/j.apsusc.2007.07.173
[3] R. Casasola, J. M. Rincón, and M. Romero, “Glass–ceramic glazes for ceramic tiles: a review,” Journal of Materials Science, vol. 47, no. 2, pp. 553–582, Jan 2012. [Online]. Available: https://doi.org/10.1007/s10853-011-5981-y
[4] A. Moreno Berto, “Ceramic tiles: Above and beyond traditional applications,” Journal of the European Ceramic Society, vol. 27, no. 2, pp. 1607–1613, 2007. [Online]. Available: https://doi.org/10.1016/j.jeurceramsoc.2006.04.146
[5] M. Raimondo, G. Guarini, C. Zanelli, F. Marani, L. Fossa, and M. Dondi, “Printing nano tio2 on large-sized building materials: Technologies, surface modifications and functional behaviour,” Ceramics International, vol. 38, no. 6, pp. 4685–4693, 2012. [Online]. Available: https://doi.org/10.1016/j.ceramint.2012.02.051
[6] J. González Hernández, J. Pérez Robles, F. Ruiz, and J. Martínez, “Vidrios SiO2 nanocompuestos preparados por sol-gel: revisión,” Superficies y vacío, no. 11, pp. 1–16, 2000. [Online]. Available: https://goo.gl/cVrCwj
[7] C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol–Gel Processing. San Diego: Academic Press, 1990. [Online]. Available: https://doi.org/10.1016/B978-0-08-057103-4.50007-6
[8] M. Guglielmi and G. Carturan, “Precursors for sol-gel preparations,” Journal of Non-Crystalline Solids, vol. 100, no. 1, pp. 16–30, 1988. [Online]. Available: https://doi.org/10.1016/0022-3093(88)90004-X
[9] J. Livage and D. Ganguli, “Sol-gel electrochromic coatings and devices: A review,” Solar Energy Materials and Solar Cells, vol. 68, no. 3, pp. 365–381, 2001. [Online]. Available: https://doi.org/10.1016/S0927-0248(00)00369-X
[10] J. Livage, “Sol-gel processes,” Current Opinion in Solid State and Materials Science, vol. 2, no. 2, pp. 132–138, 1997. [Online]. Available: https://doi.org/10.1016/S1359-0286(97)80057-5
[11] L. Znaidi, “Sol-gel-deposited zno thin films: A review,” Materials Science and Engineering: B, vol. 174, no. 1, pp. 18–30, 2010. [Online]. Available: https://doi.org/10.1016/j.mseb.2010.07.001
[12] D. Chen, “Anti-reflection (ar) coatings made by sol-gel processes: A review,” Solar Energy Materials and Solar Cells, vol. 68, no. 3, pp. 313–336, 2001. [Online]. Available: https://doi.org/10.1016/S0927-0248(00)00365-2
[13] S. Attia, J. Wang, G. Wu, J. Shen, and J. Ma, “Review on sol-gel derived coatings: Process, techniques and optical applications,” Journal of Materials Science & Technology, vol. 18, no. 3, pp. 211–218, 2002. [Online]. Available: https://doi.org/10.3321/j.issn:1005-0302.2002.03.005
[14] D. Meyerhofer, “Characteristics of resist films produced by spinning,” Journal of Applied Physics, vol. 49, no. 7, pp. 3993–3997, 1978. [Online]. Available: https://doi.org/10.1063/1.325357
[15] J. H. Lai, “An investigation of spin coating of electron resists,” Polymer Engineering & Science, vol. 19, no. 15, pp. 1117–1121, 1979. [Online]. Available: https://doi.org/10.1002/pen.760191509
[16] J. Martín-Márquez, J. M. Rincón, and M. Romero, “Effect of firing temperature on sintering of porcelain stoneware tiles,” Ceramics International, vol. 34, no. 8, pp. 1867–1873, 2008. [Online]. Available: https://doi.org/10.1016/j.ceramint.2007.06.006
[17] D. B. Hall, P. Underhill, and J. M. Torkelson, “Spin coating of thin and ultrathin polymer films,” Polymer Engineering & Science, vol. 38, no. 12, pp. 2039–2045, 1998. [Online]. Available: https://doi.org/10.1002/pen.10373
[18] A. L. da Silva, M. Dondi, M. Raimondo, and D. Hotza, “Photocatalytic ceramic tiles: Challenges and technological solutions,” Journal of the European Ceramic Society, vol. 38, no. 4, pp. 1002–1017, 2018. [Online]. Available: https://doi.org/10.1016/j.jeurceramsoc.2017.11.039
[19] C. A. Otálora Bastidas, “Desarrollo de materiales usados en la fabricación de celdas solares orgánicas,” Master’s thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2013. [Online]. Available: https://goo.gl/4kKihE
[20] C. Terrier, J. Chatelon, R. Berjoan, and J. Roger, “Sb-doped SnO2 transparent conducting oxide from the sol-gel dip-coating technique,” Thin Solid Films, vol. 263, no. 1, pp. 37–41, 1995. [Online]. Available: https://doi.org/10.1016/0040-6090(95)06543-1
[21] S. Kato, S. Kato, H. Taoda, and S. Katoh, “Thin film coating of photocatalytics on ultra light ceramic tile by use of supercritical fluid,” High Pressure Research, vol. 20, no. 1-6, pp. 415–419, 2001. [Online]. Available: https://doi.org/10.1080/08957950108206189
[22] R. Kuisma, L. Fröberg, H.-R. Kymäläinen, E. Pesonen-Leinonen, M. Piispanen, P. Melamies, M. Hautala, A.-M. Sjöberg, and L. Hupa, “Microstructure and cleanability of uncoated and fluoropolymer, zirconia and titania coated ceramic glazed surfaces,” Journal of the European Ceramic Society, vol. 27, no. 1, pp. 101–108, 2007. [Online]. Available: https://doi.org/10.1016/j.jeurceramsoc.2006.02.035
[23] M. Piispanen, J. Määttä, S. Areva, A.-M. Sjöberg, M. Hupa, and L. Hupa, “Chemical resistance and cleaning properties of coated glazed surfaces,” Journal of the European Ceramic Society, vol. 29, no. 10, pp. 1855–1860, 2009. [Online]. Available: https://doi.org/10.1016/j.jeurceramsoc.2008.11.007
[24] M. Hofer and D. Penner, “Thermally stable and photocatalytically active titania for ceramic surfaces,” Journal of the European Ceramic Society, vol. 31, no. 15, pp. 2887–2896, 2011. [Online]. Available: https://doi.org/10.1016/j.jeurceramsoc.2011.07.016
[25] K. Murugan, R. Subasri, T. Rao, A. S. Gandhi, and B. Murty, “Synthesis, characterization and demonstration of self-cleaning tio2 coatings on glass and glazed ceramic tiles,” Progress in Organic Coatings, vol. 76, no. 12, pp. 1756–1760, 2013. [Online]. Available: https://doi.org/10.1016/j.porgcoat.2013.05.012
[26] N. Baheiraei, F. Moztarzadeh, and M. Hedayati, “Preparation and antibacterial activity of Ag/SiO2 thin film on glazed ceramic tiles by sol-gel method,” Ceramics International, vol. 38, no. 4, pp. 2921–2925, 2012. [Online]. Available: https://doi.org/10.1016/j.ceramint.2011.11.068
[27] V. Soares, P. Soares, O. Peitl, E. Zanotto, A. Durán, and Y. Castro, “Resistencia al desgaste de recubrimientos sol-gel de SiO2 y SiO2 - ZrO2 sobre materiales vitrocerámicos obtenidos por sinterización,” Boletín la Sociedad Española De Cerámica y Vidrio, vol. 52, no. 5, pp. 225–230, 2013. [Online]. Available: https://doi.org/10.3989/cyv.272013
[28] P. Zhang, J. Tian, R. Xu, and G. Ma, “Hydrophilicity, photocatalytic activity and stability of tetraethyl orthosilicate modified tio2 film on glazed ceramic surface,” Applied Surface Science, vol. 266, pp. 141–147, 2013. [Online]. Available: https://doi.org/10.1016/j.apsusc.2012.11.117
[29] L. Lopez, W. A. Daoud, D. Dutta, B. C. Panther, and T. W. Turney, “Effect of substrate on surface morphology and photocatalysis of large-scale TiO2 films,” Applied Surface Science, vol. 265, pp. 162–168, 2013. [Online]. Available: https://doi.org/10.1016/j.apsusc.2012.10.156
[30] M. Hasmaliza, H. Foo, and K. Mohd, “Anatase as antibacterial material in ceramic tiles,” Procedia Chemistry, vol. 19, pp. 828–834, 2016. [Online]. Available: https://doi.org/10.1016/j.proche.2016.03.109
[31] M. Hadnadjev, J. Ranogajec, S. Petrovic, S. Markov, V. Ducman, and R. Marinkovic- Neducin, “Design of self-cleaning tio2 coating on clay roofing tiles,” Philosophical Magazine, vol. 90, no. 22, pp. 2989–3002, 2010. [Online]. Available: https://doi.org/10.1080/14786431003767017
[32] B. Yu, D. Vak, J. Jo, S. Na, S. Kim, M. Kim, and D. Kim, “Factors to be considered in bulk heterojunction polymer solar cells fabricated by the spray process,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 6, pp. 1838–1846, Nov 2010. [Online]. Available: https://doi.org/10.1109/JSTQE.2010.2042282
[33] F. Aziz and A. Ismail, “Spray coating methods for polymer solar cells fabrication: A review,” Materials Science in Semiconductor Processing, vol. 39, pp. 416–425, 2015. [Online]. Available: https://doi.org/10.1016/j.mssp.2015.05.019
[34] S. Colella, M. Mazzeo, G. Melcarne, S. Carallo, G. Ciccarella, and G. Gigli, “Spray coating fabrication of organic solar cells bypassing the limit of orthogonal solvents,” Applied Physics Letters, vol. 102, no. 20, p. 203307, 2013. [Online]. Available: https://doi.org/10.1063/1.4807464
[35] C. Sciancalepore and F. Bondioli, “Durability of SiO2-TiO2 Photocatalytic Coatings on Ceramic Tiles,” International Journal of Applied Ceramic Technology, vol. 12, no. 3, pp. 679–684, 2015. [Online]. Available: https://doi.org/10.1111/ijac.12240
[36] F. Bondioli, R. Taurino, and A. Ferrari, “Functionalization of ceramic tile surface by sol-gel technique,” Journal of Colloid and Interface Science, vol. 334, no. 2, pp. 195–201, 2009. [Online]. Available: https://doi.org/10.1016/j.jcis.2009.02.054
[37] O. V. Savvova and L. L. Bragina, “Use of titanium dioxide for the development of antibacterial glass enamel coatings,” Glass and Ceramics, vol. 67, no. 5, pp. 184–186, Nov 2010. [Online]. Available: https://doi.org/10.1007/s10717-010-9258-8
[38] F. Bondioli, T. Manfredini, M. Giorgi, and G. Vignali, “Functionalization of ceramic tile surface by soluble salts addition: Part i,” Journal of the European Ceramic Society, vol. 30, no. 1, pp. 11–16, 2010. [Online]. Available: https://doi.org/10.1016/j.jeurceramsoc.2009.08.012
[39] F. Bondioli, M. Dinelli, R. Giovanardi, and M. Giorgi, “Functionalization of ceramic tile surface by soluble salts addition: Part ii. titanium and silver addition,” Journal of the European Ceramic Society, vol. 30, no. 9, pp. 1873–1878, 2010. [Online]. Available: https://doi.org/10.1016/j.jeurceramsoc.2010.03.008
[40] F. C. Krebs, “Fabrication and processing of polymer solar cells: A review of printing and coating techniques,” Solar Energy Materials and Solar Cells, vol. 93, no. 4, pp. 394–412, 2009. [Online]. Available: https://doi.org/10.1016/j.solmat.2008.10.004
[41] P. S. Marcos, J. Marto, T. Trindade, and J. Labrincha, “Screen-printing osol-g2 photocatalytic layers on glazed ceramic tiles,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 197, no. 2, pp. 125–131, 2008. [Online]. Available: https://doi.org/10.1016/j.jphotochem.2007.12.017
[42] J. Marto, P. S. Marcos, T. Trindade, and J. Labrincha, “Photocatalytic decolouration of orange ii by zno active layers screen-printed on ceramic tiles,” Journal of Hazardous Materials, vol. 163, no. 1, pp. 36–42, 2009. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2008.06.056
[43] E. Rego, J. Marto, P. S. Marcos, and J. Labrincha, “Decolouration of orange ii solutions by tio2 and zno active layers screenprinted on ceramic tiles under sunlight irradiation,” Applied Catalysis A: General, vol. 355, no. 1, pp. 109–114, 2009. [Online]. Available: https://doi.org/10.1016/j.apcata.2008.12.005
[44] M. Seabra, R. Pires, and J. Labrincha, “Ceramic tiles for photodegradation of orange ii solutions,” Chemical Engineering Journal, vol. 171, no. 2, pp. 692–702, 2011. [Online]. Available: https://doi.org/10.1016/j.cej.2011.04.028
[45] A. Ghafari-Nazari, F. Moztarzadeh, S. M. Rabiee, T. Rajabloo, M. Mozafari, and L. Tayebi, “Antibacterial activity of silver photodeposited nepheline thin film coatings,” Ceramics International, vol. 38, no. 7, pp. 5445–5451, 2012. [Online]. Available: https://doi.org/10.1016/j.ceramint.2012.03.055
[46] M. Machida, K. Norimoto, and T. Kimura, “Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware,” Journal of the American Ceramic Society, vol. 88, no. 1, pp. 95–100, 2005. [Online]. Available: https://doi.org/10.1111/j.1551-2916.2004.00006.x
[47] J. Szczawinski, H. Tomaszewski, A. Jackowska-Tracz, and M. Szczawinska, “Survival of Staphylococcus aureus exposed to UV radiation on the surface of ceramic tiles coated with TiO2,” Polish Journal of Veterinary Sciences, vol. 14, no. 1, pp. 41–46, 2011. [Online]. Available: https://doi.org/10.2478/v10181-011-0006-y
[48] C. L. Bianchi, B. Sacchi, S. Capelli, C. Pirola, G. Cerrato, S. Morandi, and V. Capucci, “Micro-sized tio2 as photoactive catalyst coated on industrial porcelain grès tiles to photodegrade drugs in water,” Environmental Science and Pollution Research, vol. 25, no. 21, pp. 20 348–20 353, Jul 2018. [Online]. Available: https://doi.org/10.1007/s11356-017-9066-6
[49] A. M. Buckley and M. Greenblatt, “The sol-gel preparation of silica gels,” Journal of Chemical Education, vol. 71, no. 7, p. 599, 1994. [Online]. Available: https://doi.org/10.1021/ed071p599
[50] A. L. da Silva, M. Dondi, and D. Hotza, “Self-cleaning ceramic tiles coated with Nb2O5-doped-TiO2 nanoparticles,” Ceramics International, vol. 43, no. 15, pp. 11 986–11 991, 2017. [Online]. Available: https://doi.org/10.1016/j.ceramint.2017.06.049
[51] A. L. da Silva, D. N. Muche, S. Dey, D. Hotza, and R. H. Castro, “Photocatalytic nb2o5-doped tio2 nanoparticles for glazed ceramic tiles,” Ceramics International, vol. 42, no. 4, pp. 5113–5122, 2016. [Online]. Available: https://doi.org/10.1016/j.ceramint.2015.12.029
[52] S. Niederhãusern, M. Bondi, and F. Bondioli, “Self-cleaning and antibacteric ceramic tile surface,” International Journal of Applied Ceramic Technology, vol. 10, no. 6, pp. 949–956, 2013. [Online]. Available: https://doi.org/10.1111/j.1744-7402.2012.02801.x
[53] V. Ducman, V. Petrovic, and S. D. Škapin, “Photo-catalytic efficiency of laboratory made and commercially available ceramic building products,” Ceramics International, vol. 39, no. 3, pp. 2981–2987, 2013. [Online]. Available: https://doi.org/10.1016/j.ceramint.2012.09.075
[54] S. Ke, X. Cheng, Q. Wang, Y. Wang, and Z. Pan, “Preparation of a photocatalytic TiO2/ZnTiO3 coating on glazed ceramic tiles,” Ceramics International, vol. 40, no. 6, pp. 8891–8895, 2014. [Online]. Available: https://doi.org/10.1016/j.ceramint.2014.01.027
[55] V. Petrovic, V. Ducman, and S. D. Škapin, “Determination of the photocatalytic efficiency of TiO2 coatings on ceramic tiles by monitoring the photodegradation of organic dyes,” Ceramics International, vol. 38, no. 2, pp. 1611–1616, 2012. [Online]. Available: https://doi.org/10.1016/j.ceramint.2011.09.050
[56] P. Sooksaen, N. Saowaros, K. Ngamkaruhasereethorn, and A. Pringkasemchai, “Photocatalytic degradation study of titania sol-gel coated on commercial unglazed ceramic tiles,” Key Engineering Materials, vol. 751, pp. 819–824, 2017. [Online]. Available: https://doi.org/10.4028/www.scientific.net/KEM.751.819
[57] V. B. Tezza, M. Scarpato, L. F. S. Oliveira, and A. M. Bernardin, “Effect of firing temperature on the photocatalytic activity of anatase ceramic glazes,” Powder Technology, vol. 276, pp. 60–65, 2015. [Online]. Available: https://doi.org/10.1016/j.powtec.2015.01.076
[58] R. Taurino, L. Barbieri, and F. Bondioli, “Surface properties of new green building material after tio2sio2 coatings deposition,” Ceramics International, vol. 42, no. 4, pp. 4866–4874, 2016. [Online]. Available: https://doi.org/10.1016/j.ceramint.2015.12.002
[59] M. Nevárez-Martínez, P. Espinoza-Montero, F. Quiroz-Chávez, and B. Ohtani, “Fotocatálisis: inicio, actualidad y perspectivas a través del tio2,” Avances en Química, vol. 12, no. 2–3, pp. 45–59, 2018. [Online]. Available: https://goo.gl/FtiWUw
[60] L. Liao, S. Heylen, S. P. Sree, B. Vallaey, M. Keulemans, S. Lenaerts, M. B. Roeffaers, and J. A. Martens, “Photocatalysis assisted simultaneous carbon oxidation and nox reduction,” Applied Catalysis B: Environmental, vol. 202, pp. 381–387, 2017. [Online]. Available: https://doi.org/10.1016/j.apcatb.2016.09.042
[61] Y. Boyjoo, H. Sun, J. Liu, V. K. Pareek, and S. Wang, “A review on photocatalysis for air treatment: From catalyst development to reactor design,” Chemical Engineering Journal, vol. 310, pp. 537–559, 2017. [Online]. Available: https://doi.org/10.1016/j.cej.2016.06.090
[62] S. Q. Sun, B. Sun, W. Zhang, and D. Wang, “Preparation and antibacterial activity of ag-tio2 composite film by liquid phase deposition (lpd) method,” Bulletin of Materials Science, vol. 31, no. 1, pp. 61–66, Feb 2008. [Online]. Available: https://doi.org/10.1007/s12034-008-0011-7
[63] F. Tana, M. Messori, D. Contini, A. Cigada, T. Valente, F. Variola, L. D. Nardo, and F. Bondioli, “Synthesis and characterization of scratch-resistant hybrid coatings based on non-hydrolytic sol-gel zro2 nanoparticles,” Progress in Organic Coatings, vol. 103, pp. 60–68, 2017. [Online]. Available: https://doi.org/10.1016/j.porgcoat.2016.11.022