Efecto de la composición química del baño en la microestructura y resistencia a la corrosión de los recubrimientos de zinc por inmersión en caliente: Una revisión

Contenido principal del artículo

Jeanette Pamela Hernández Martínez http://orcid.org/0000-0002-8359-1058
Maribel Suárez http://orcid.org/0000-0003-0449-0417

Resumen

Los recubrimientos metálicos son métodos ampliamente utilizados para la protección contra la corrosión de aleaciones metálicas, siendo el proceso de cincado por inmersión en caliente uno de los que presenta mayor evolución a nivel industrial. El objetivo de este trabajo es realizar una revisión bibliográfica sobre la influencia de la adición de elementos aleantes en el baño, en la microestructura y en el comportamiento a la corrosión de recubrimientos de zinc obtenidos por la técnica de inmersión en caliente. Se estableció que la composición química de los baños galvanizados influye en las características microestructurales de los recubrimientos y en su comportamiento a la corrosión. La mejora de la resistencia a la corrosión de los recubrimientos de zinc se produce por la adición a los baños de elementos generalmente más activos que el zinc, tales como el magnesio o el aluminio que permiten la formación de capas pasivas que retardan el proceso corrosivo.
Abstract 277 | PDF Downloads 237 PDF (English) Downloads 30 HTML Downloads 38 HTML (English) Downloads 20 EPUB Downloads 11 XML Downloads 0

Citas

[1] J. Cervantes, A. Barba, M. Hernández, J. Salas, J. Espinoza, C. Dénova, G. T.-V. nor, A. Conde, A. Covelo, and R. Valdez, “Obtención y caracterización de recubrimientos Zn-Al-Cu por inmersión en caliente sobre aceros de bajo carbono,” Revista de Metalurgia, vol. 49, no. 5, pp. 351–359, 2013. [Online]. Available: https://doi.org/10.3989/revmetalm.1316
[2] L. Shiwei, G. Bo, T. Ganfeng, H. Yi, H. Liang, and Y. Shaohua, “Study on the corrosion mechanism of zn-5al-0.5mg-0.08si coating,” Journal of Metallurgy, vol. 2011, Article ID 917469, pp. 1–6, 2011. [Online]. Available: https://doi.org/10.1155/2011/917469
[3] A. R. Marder, “The metallurgy of zinc-coated steel,” Progress in Materials Science, vol. 45, no. 3, pp. 191–271, 2000. [Online]. Available: https://doi.org/10.1016/S0079-6425(98)00006-1
[4] Y. Rico and E. Carrasquero, “Efecto de la composición química en el comportamiento mecánico de recubrimientos galvanizados por inmersión en caliente: una revisión,” Ingenius, no. 18, pp. 30–39, 2017. [Online]. Available: http://dx.doi.org/10.17163/ings.n18.2017.04
[5] American Galvanizers Association, “Hot-dip galvanizing for corrosion protection a specifier’s guide,” 2012. [Online]. Available: https://bit.ly/2pGEzeb
[6] Y. Rico and J. Hernández, “Influencia de la velocidad de enfriamiento sobre la microestructura y comportamiento a la corrosión de recubrimientos Zn-7Al por inmersión en caliente sobre acero,” Revista Latinoamericana de Metalurgia y Materiales, vol. 35, pp. 269–275, 12 2015. [Online]. Available: https://bit.ly/2OaV0sy
[7] S. D. Cramer and J. Bernard S. Covino, “Corrosion: Fundamentals, testing, and protection,” ASM International. The Materials Information Society, Tech. Rep., 2003. [Online]. Available: https://bit.ly/2pGH6Fd
[8] Y. Rico and E. J. Carrasquero, “Microstructural evaluation of double-dip galvanized coatings on carbon steel,” MRS Advances, vol. 2, no. 62, pp. 3917–3923, 2017. [Online]. Available: https://doi.org/10.1557/adv.2017.608
[9] P. Volovitch, T. N. Vu, C. Allély, A. A. Aal, and K. Ogle, “Understanding corrosion via corrosion product characterization: Ii. role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel,” Corrosion Science, vol. 53, no. 8, pp. 2437–2445, 2011. [Online]. Available: https://doi.org/10.1016/j.corsci.2011.03.016
[10] C. Yao, S. L. Tay, J. H. Yang, T. Zhu, and W. Gao, “Hot dipped zn-al-mg-cu coating with improved mechanical and anticorrosion properties,” International Journal of Electrochemical Science, vol. 9, pp. 7083–7096, 2014. [Online]. Available: https://bit.ly/2XChPZq
[11] S. Schuerz, M. Fleischanderl, G. H. Luckeneder, K. Preis, T. Haunschmied, G. Mori, and A. C. Kneissl, “Corrosion behaviour of zn-al-mg coated steel sheet in sodium chloride-containing environment,” Corrosion Science, vol. 51, no. 10, pp. 2355–2363, 2009. [Online]. Available: https://doi.org/10.1016/j.corsci.2009.06.019
[12] J. Tanaka, K. Ono, S. Hayashi, K. Ohsasa, and T. Narita, “Effect of mg and si on the microstructure and corrosion behavior of zn-al hot dip coatings on low carbon steel,” ISIJ International, vol. 42, no. 1, pp. 80–85, 2002. [Online]. Available: https://doi.org/10.2355/isijinternational.42.80
[13] K. Tachibana, Y. Morinaga, and M. Mayuzumi, “Hot dip fine zn and zn-al alloy double coating for corrosion resistance at coastal area,” Corrosion Science, vol. 49, no. 1, pp. 149–157, 2007, progress in Corrosion Research in Commemoration of Centenary of Birth of Professor Go Okamoto. [Online]. Available: https://doi.org/10.1016/j.corsci.2006.05.015
[14] J. Elvins, J. A. Spittle, and D. A. Worsley, “Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion,” Corrosion Science, vol. 47, no. 11, pp. 2740–2759, 2005. [Online]. Available: https://doi.org/10.1016/j.corsci.2004.11.011
[15] D. Thierry and N. LeBozec, “Corrosion products formed on confined hot-dip galvanized steel in accelerated cyclic corrosion tests,” CORROSION, Hernández y Suárez / Efecto de la composición química del baño en la microestructura y resistencia a la corrosión de los recubrimientos de zinc por inmersión en caliente: Una revisión 51 vol. 65, no. 11, pp. 718–725, 2009. [Online]. Available: https://doi.org/10.5006/1.3319098
[16] M. Dutta, A. K. Halder, and S. B. Singh, “Morphology and properties of hot dip zn-mg and zn-mg-al alloy coatings on steel sheet,” Surface and Coatings Technology, vol. 205, no. 7, pp. 2578–2584, 2010. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2010.10.006
[17] N. LeBozec, D. Thierry, D. Persson, C. K. Riener, and G. Luckeneder, “Influence of microstructure of zinc-aluminium-magnesium alloy coated steel on the corrosion behavior in outdoor marine atmosphere,” Surface and Coatings Technology, vol. 374, pp. 897–909, 2019. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2019.06.052
[18] P. Volovitch, C. Allely, and K. Ogle, “Understanding corrosion via corrosion product characterization: I. case study of the role of mg alloying in zn-mg coating on steel,” Corrosion Science, vol. 51, no. 6, pp. 1251–1262, 2009. [Online]. Available: https://doi.org/10.1016/j.corsci.2009.03.005
[19] S. Schürz, G. H. Luckeneder, M. Fleischanderl, P. Mack, H. Gsaller, A. C. Kneissl, and G. Mori, “Chemistry of corrosion products on zn-al-mg alloy coated steel,” Corrosion Science, vol. 52, no. 10, pp. 3271–3279, 2010. [Online]. Available: https://doi.org/10.1016/j.corsci.2010.05.044
[20] P. Sixtos, J. Cervantes, A. Barba, J. Roviroza, E. Garduño, R. Valdez, M. Trujillo, J. González, J. Salas, and G. Torres, “Evaluación de recubrimientos de aleaciones Zn-Al-Cu obtenidos por inmersion en caliente y por via termoquimica,” in XV Congreso Internacional Anual de la SOMIM, del 23 al 25 de septiembre del 2009. Cd. Obregón, Sonora, México, 2009, pp. 678–682. [Online]. Available: https://bit.ly/34gcWaQ
[21] A. Barba, J. Cervantes, R. González, D. Hernández, V. Hernández, R. Valdez, A. Covelo, and M. Hernández, “Influencia de la adición de pequeñas cantidades de Ni a baños de galvanizado por inmersión en caliente, en las propiedades de aceros al carbono galvanizados,” in XXIV Congreso Iinternacional Anual de la SOMIM 19 al 21 de septiembre de 2018, Campeche, México, 2018. [Online]. Available: https://bit.ly/37xBQVt
[22] C. M. Cotell, J. A. Sprague, and J. F.A. Smidt, ASM Handbook, Volume 5: Surface Engineering, ASM International, Ed., 1994. [Online]. Available: https://bit.ly/35qcdUQ
[23] Y. Li, “Formation of nano-crystalline corrosion products on zn-al alloy coating exposed to seawater,” Corrosion Science, vol. 43, no. 9, pp. 1793–1800, 2001. [Online]. Available: https://doi.org/10.1016/S0010-938X(00)00169-4
[24] M. S. Azevedo, C. Allély, K. Ogle, and P. Volovitch, “Corrosion mechanisms of zn(mg, al) coated steel in accelerated tests and natural exposure: 1. the role of electrolyte composition in the nature of corrosion products and relative corrosion rate,” Corrosion Science, vol. 90, pp. 472–481, 2015. [Online]. Available: https://doi.org/10.1016/j.corsci.2014.05.014
[25] N. C. Hosking, M. A. Ström, P. H. Shipway, and C. D. Rudd, “Corrosion resistance of zinc-magnesium coated steel,” Corrosion Science, vol. 49, no. 9, pp. 3669–3695, 2007. [Online]. Available: https://doi.org/10.1016/j.corsci.2007.03.032
[26] M. Manna, G. Naidu, N. Rani, and N. Bandyopadhyay, “Characterisation of coating on rebar surface using hot-dip zn and zn-4.9al-0.1 misch metal bath,” Surface and Coatings Technology, vol. 202, no. 8, pp. 1510–1516, 2008. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2007.07.001
[27] A. P. Yadav, H. Katayama, K. Noda, H. Masuda, A. Nishikata, and T. Tsuru, “Effect of al on the galvanic ability of zn-al coating under thin layer of electrolyte,” Electrochimica Acta, vol. 52, no. 7, pp. 2411–2422, 2007. [Online]. Available: https://doi.org/10.1016/j.electacta.2006.08.050
[28] H. C. Shih, J. W. Hsu, C. N. Sun, and S. C. Chung, “The lifetime assessment of hot-dip 5% al-zn coatings in chloride environments,” Surface and Coatings Technology, vol. 150, no. 1, pp. 70–75, 2002. [Online]. Available: https://doi.org/10.1016/S0257-8972(01)01508-0
[29] O. de Rincón, A. Rincón, M. Sánchez, N. Romero, O. Salas, R. Delgado, B. López, J. Uruchurtu, M. Marroco, and Z. Panosian, “Evaluating Zn, Al and Al-Zn coatings on carbon steel in a special atmosphere,” Construction and Building Materials, vol. 23, no. 3, pp. 1465–1471, 2009. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2008.07.002
[30] S. Flores and K. Paucar, “Evaluación de sistemas de recubrimientos mediante espectroscopía de impedancia electroquímica,” Jornadas SAM - CONAMET - Simposio Materia 2003, 2003. [Online]. Available: https://bit.ly/2KIjsPR
[31] E. Sacco, J. Culcasi, C. Eisner, and A. D. Darli, “Efecto de la deformación por tracción sobre la orientación cristalográfica del recubrimiento y la resistencia a la corrosión en CNS de chapas de acero con recubrimientos base cinc,” Revista de Metalurgia, vol. 38, no. 6, 52 INGENIUS N.° 23, enero-junio de 2020 pp. 403–409, 2002. [Online]. Available: https://doi.org/10.3989/revmetalm.2002.v38.i6.425
[32] H. Fujisawa, R. Kaneko, and H. Ishikawa, “Hot-Dip Zn-5 % Al alloy-coated Steel Sheets JFE ECOGAL ®,” JFE Technical Report, no. 14, pp. 41–45, 2009. [Online]. Available: https://bit.ly/335wY6I
[33] M. Carbucicchio, R. Ciprian, F. Ospitali, and G. Palombarini, “Morphology and phase composition of corrosion products formed at the zinc-iron interface of a galvanized steel,” Corrosion Science, vol. 50, no. 9, pp. 2605–2613, 2008. [Online]. Available: https://doi.org/10.1016/j.corsci.2008.06.007
[34] G. Reumont, J. B. Vogt, A. Iost, and J. Foct, “The effects of an Fe-Zn intermetalliccontaining coating on the stress corrosion cracking behavior of a hot-dip galvanized steel,” Surface and Coatings Technology, vol. 139, no. 2, pp. 265–271, 2001. [Online]. Available: https://doi.org/10.1016/S0257-8972(01)01017-9
[35] N. Michailidis, F. Stergioudi, G. Maliaris, and A. Tsouknidas, “Influence of galvanization on the corrosion fatigue performance of high-strength steel,” Surface and Coatings Technology, vol. 259, pp. 456–464, 2014. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2014.10.049
[36] K. A. Yasakau, S. Kallip, A. Lisenkov, M. G. S. Ferreira, and M. L. Zheludkevich, “Initial stages of localized corrosion at cut-edges of adhesively bonded zn and zn-almg galvanized steel,” Electrochimica Acta, vol. 211, pp. 126–141, 2016. [Online]. Available: https://doi.org/10.1016/j.electacta.2016.06.045
[37] E. Carrasquero, Y. Rico, and J. Minchala, “Evaluación de propiedades mecánicas en recubrimientos galvanizados por doble inmersión en caliente sobre acero al carbono,” INGENIUS, no. 22, pp. 80–89, 2019. [Online]. Available: https://doi.org/10.17163/ings.n22.2019.08
[38] K. Zhang, R. Song, and Y. Gao, “Corrosion behavior of hot-dip galvanized advanced high strength steel sheet in a simulated marine atmospheric environment,” International Journal of Electrochemical Science, no. 14, pp. 1488–1499, 2019. [Online]. Available: http://doi.org/10.20964/2019.02.13