Humedad y su relación con la espectroscopía dieléctrica en agregados de concreto

Contenido principal del artículo

Franco Abanto https://orcid.org/0000-0002-9388-2692
Pedro Rotta https://orcid.org/0000-0002-6439-2870
Luis La Madrid https://orcid.org/0000-0002-4293-8086
Juan Soto https://orcid.org/0000-0001-9157-3098
Gerson La Rosa https://orcid.org/0000-0001-6829-2706
José Manrique https://orcid.org/0000-0002-0331-2734
Gaby Ruiz https://orcid.org/0000-0003-3835-9708
William Ipanaque https://orcid.org/0000-0003-4039-4422

Resumen

Medir el contenido de humedad (CH) de los agregados de concreto (ADC) en la fabricación de concreto premezclado es uno de los retos actuales en la industria de la construcción porque afecta a las propiedades finales del concreto. Actualmente los métodos que se utilizan para medir el CH en ADC son invasivos y destructivos. Este artículo presenta una técnica moderna basada en espectroscopía dieléctrica (ED), un método que al propagar microondas en el material correlaciona su constante dieléctrica (CD) y su CH. En esta investigación se ha utilizado este método en ADC. Tres diferentes canteras peruanas de ADC (Moyobamba, Sol-Sol y Cerro Mocho) han sido utilizadas. Los resultados demuestran que el sensor a una frecuencia de 1.5 GHz es capaz de detectar el CH en ADC con una regresión lineal de R2 = 95 %. En conclusión, se puede utilizar la ED como un método de sensado no invasivo y en línea de CH en ADC para ser utilizado en la industria de la construcción.
Abstract 421 | PDF Downloads 184 PDF (English) Downloads 17 HTML Downloads 38 HTML (English) Downloads 14 EPUB Downloads 17 EPUB (English) Downloads 6 XML Downloads 0

Citas

[1] J. B. Hasted and M. A. Shah, “Microwave absorption by water in building materials,” British Journal of Applied Physics, vol. 15, no. 7, pp. 825–836, jul 1964. [Online]. Available: https://doi.org/10.1088%2F0508-3443%2F15%2F7%2F307
[2] A. Cataldo, E. De Benedetto, and G. Cannazza, “Hydration monitoring and moisture control of cement-based samples through embedded wire-like sensing elements,” IEEE Sensors Journal, vol. 15, no. 2, pp. 1208–1215, 2015. [Online]. Available: https://doi.org/10.1109/JSEN.2014.2360712
[3] F. P. Balobey, “Optimalisation of microwave method for moisture content measurement in asbestos-cement sheets,” Russian: Oborudovanye Prom. Story. Meter, Instrum. for Build. Mater, vol. 1, pp. 44–50, 1964.
[4] A. W. Kraszewski, “Microwave aquametryneeds and perspectives,” IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 5, pp. 828–835, 1991. [Online]. Available: https://doi.org/10.1109/22.79110
[5] A. Kraszewski, “Microwave aquametry–a bibliography,” Journal of Microwave Power, vol. 15, no. 4, pp. 298–310, 1980. [Online]. Available: https://doi.org/10.1080/16070658.1980.11689215
[6] V. Komarov, Handbook of Dielectric and Thermal Properties of Materials at Microwave Frequencies. Artech House, 2012. [Online]. Available: https://bit.ly/2WQE2Tv
[7] A. Cownie and L. S. Palmer, “The effect of moisture on the electrical properties of soil,” Proceedings of the Physical Society. Section B, vol. 65, no. 4, pp. 295–301, apr 1952. [Online]. Available: https://doi.org/10.1088%2F0370-1301%2F65%2F4%2F308
[8] J. J. Windle and T. M. Shaw, “Dielectric properties of wool–water systems. ii. 26 000 megacycles,” The Journal of Chemical Physics, vol. 25, no. 3, pp. 435–439, 1956. [Online]. Available: https://doi.org/10.1063/1.1742941
[9] A. Nakanishi, T. Hori, and J. Fujiwara, “An evaluation of“moister”as a measuring apparatus of the moisture content of paper,” Japanese: Res. Inst. Techn. Bull, vol. 1, pp. 9–20, 1955.
[10] A. Yasukawa, “Measurement and automatic control of moisture content in rayon pulp: Soc. of instrum,” Technol. Japan J, vol. 6, no. 8, pp. 386–391, 1956.
[11] R. Rodríguez Arisméndiz, “Estudio de la espectroscopía dieléctrica para la medición del contenido de humedad en productos alimenticios,” Ph.D. dissertation, 2017. [Online]. Available: https://hdl.handle.net/11042/3487
[12] M. Berliner and S. A. Polishchuk, “Instrument for moisture content measurement in slurries,” Russian: Cement, pp. 14–15, 1978.
[13] D. K. Cheng, Fundamentos de electromagnetismo para ingeniería. Pearson Educación, 1997. [Online]. Available: https://bit.ly/3cvOXIP
[14] A. R. Dean and P. Bridle, “Test on the use of a microwave moisture meter,” Timber Trade J., vol. 27, pp. 50–52, 1969.
[15] D. F. Tirado, P. M. Montero, and D. Acevedo, “Estudio comparativo de métodos empleados para la determinación de humedad de varias matrices alimentarias,” Información tecnológica, vol. 26, pp. 03–10, 00 2015. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642015000200002
[16] G. R. Oetzel, F. P. Villalba, W. J. Goodger, and K. V. Nordlund, “A comparison of on-farm methods for estimating the dry matter content of feed ingredients1,” Journal of Dairy Science, vol. 76, no. 1, pp. 293–299, 1993. [Online]. Available: https://doi.org/10.3168/jds.S0022-0302(93)77349-X
[17] L. Jílková, T. Hlincík, and K. Ciahotný, “Determination of water content in pyrolytic tars using coulometric karl-fischer titration,” Journal of Advanced Engineering, vol. 57, no. 1, pp. 8–13, 2017. [Online]. Available: http://dx.doi.org/10.14311/AP.2017.57.0008
[18] A. M. Helmenstine, “What is distillation? chemistry definition,” ThoughtCo, 2019. [Online]. Available: https://bit.ly/2WLgTli
[19] L. M. L. Nollet, Handbook of Food Analysis: Physical characterization and nutrient analysis, ser. Food Science and Technology - Marcel Dekker, Inc. CRC PressI Llc, 2004. [Online]. Available: https://bit.ly/3fMQrAI
[20] G. S. Campbell and C. S. Campbell, “Water content and potential, measurement,” in Reference Module in Earth Systems and Environmental Sciences. Elsevier, 2013. [Online]. Available: https://doi.org/10.1016/B978-0-12-409548-9.05333-1
[21] M. R. Goyal, Management of Drip/Trickle or Micro Irrigation. Apple Academic Press, 2012. [Online]. Available: https://bit.ly/2yJGaVl
[22] T. Reyna, J. Linares, M. Lábaque, and S. Reyna, “Métodos para medir el contenido de humedad vs. el tiempo. estudios de infiltración. evaluación de resultados de campo,” in XXVII Congreso Latinoamericano de Hidráulica, Lima Perú, 09 2016. [Online]. Available: https://bit.ly/3dIYexC
[23] S. Jiménez, L. Scarioni, and H. Kelim, “Nota técnica: Sensores de humedad de tipo capacitivo y resistivo, fabricados con NaCl, KBr y KCl,” INGENIERIA UC, vol. 20, no. 1, pp. 83–86, 04 2013. [Online]. Available: https://bit.ly/2Wrj2Uv
[24] S. Okamura, “Microwave technology for moisture measurement,” Subsurface Sensing Technologies and Applications, vol. 1, no. 2, pp. 205–227, 2000. [Online]. Available: https://bit.ly/2WWETC6
[25] E. Pinos-Vélez, S. Encalada, E. Gamboa, V. Robles-Bykbaev, W. Ipanque, and C. L. Chacón, “Development of a support system for the presumptive diagnosis of glaucoma through the processing of biomedical images of the human eye fundus in Ecuador,” in Advances in Human Factors and Ergonomics in Healthcare and Medical Devices, V. Duffy and N. Lightner, Eds. Cham: Springer International Publishing, 2018, pp. 100–109. [Online]. Available: https://doi.org/10.1007/978-3-319-60483-1_11
[26] J. Soto, E. Paiva, W. Ipanaqué, J. Reyes, D. Espinoza, and D. Mendoza, “Cocoa bean quality assessment by using hyperspectral index for determining the state of fermentation with a nondestructive analysis,” in 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), 2017, pp. 1–5. [Online]. Available: https://doi.org/10.1109/CHILECON.2017.8229718
[27] J. M. Ruiz Reyes, J. Soto Bohorquez, and W. Ipanaque, “Evaluation of spectral relation indexes of the peruvian’s cocoa beans during fermentation process,” IEEE Latin America Transactions, vol. 14, no. 6, pp. 2862–2867, 2016. [Online]. Available: https://doi.org/10.1109/TLA.2016.7555266
[28] J. Soto, J. Ruiz, W. Ipanaqué, and C. Chinguel, “New hyperspectral index for determining the state of fermentation in the non-destructive analysis for organic cocoa violet,” in 2016 IEEE International Conference on Automatica (ICAACCA), 2016, pp. 1–6. [Online]. Available: https://doi.org/10.1109/ICA-ACCA.2016.7778387
[29] J. Soto, G. Granda, F. Prieto, W. Ipanaque, and J. Machacuay, “Cocoa bean quality assessment by using hyperspectral images and fuzzy logic techniques,” in Twelfth International Conference on Quality Control by Artificial Vision 2015, F. Meriaudeau and O. Aubreton, Eds., vol. 9534, International Society for Optics and Photonics. SPIE, 2015, pp. 152–158. [Online]. Available: https://doi.org/10.1117/12.2182598
[30] A. W. Kraszewski and S. O. Nelson, “Microwave resonator technique for moisture content and mass determination in single soybean seeds,” IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 3, pp. 487–489, 1994. [Online]. Available: https://doi.org/10.1109/19.293475
[31] P. G. Bartley, S. O. Nelson, R. W. McClendon, and S. Trabelsi, “Determining moisture content of wheat with an artificial neural network from microwave transmission measurements,” IEEE Transactions on Instrumentation and Measurement, vol. 47, no. 1, pp. 123–126, 1998. [Online]. Available: https://doi.org/10.1109/19.728803
[32] K.-B. Kim, J.-H. Kim, S. S. Lee, and S. H. Noh, “Measurement of grain moisture content using microwave attenuation at 10.5 GHz and moisture density,” IEEE Transactions on Instrumentation and Measurement, vol. 51, no. 1, pp. 72–77, 2002. [Online]. Available: https://doi.org/10.1109/19.989904
[33] M. Ben Slima, R. Z. Morawski, A. W. Kraszewski, A. Barwicz, and S. O. Nelson, “Calibration of a microwave system for measuring grain moisture content,” IEEE Transactions on Instrumentation and Measurement, vol. 48, no. 3, pp. 778–783, 1999. [Online]. Available: https://doi.org/10.1109/19.772221
[34] S. Trabelsi and S. O. Nelson, “Free-space measurement of dielectric properties of cereal grain and oilseed at microwave frequencies,” Measurement Science and Technology, vol. 14, no. 5, pp. 589–600, mar 2003. [Online]. Available: https://doi.org/10.1088%2F0957-0233%2F14%2F5%2F308
[35] C. V. K. Kandala, “Moisture determination in single peanut pods by complex rf impedance measurement,” IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 6, pp. 1493–1496, 2004. [Online]. Available: https://doi.org/10.1109/TIM.2004.834058
[36] Z. Abbas, You Kok Yeow, A. H. Shaari, K. Khalid, J. Hassan, and E. Saion, “Complex permittivity and moisture measurements of oil palm fruits using an open-ended coaxial sensor,” IEEE Sensors Journal, vol. 5, no. 6, pp. 1281–1287, 2005. [Online]. Available: https://doi.org/10.1109/JSEN.2005.859249
[37] S. Trabelsi and S. O. Nelson, “Influence of nonequilibrated water on microwave dielectric properties of wheat and related errors in moisture sensing,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 1, pp. 194–198, 2007. [Online]. Available: https://doi.org/10.1109/TIM.2006.887314
[38] K. Tsukada and T. Kiwa, “Magnetic measurement of moisture content of grain,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2683–2685, 2007. [Online]. Available: https://doi.org/10.1109/TMAG.2007.892853
[39] C. V. K. Kandala and S. O. Nelson, “Rf impedance method for estimating moisture content in small samples of in-shell peanuts,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 3, pp. 938–943, 2007. [Online]. Available: https://doi.org/10.1109/TIM.2007.894796
[40] C. V. Kandala and N. Puppala, “Parallel-plate capacitance sensor for nondestructive measurement of moisture content of different types of wheat,” in 2012 IEEE Sensors Applications Symposium Proceedings, 2012, pp. 1–5. [Online]. Available: https://doi.org/10.1109/SAS.2012.6166325
[41] S. T. Wahyuni Siregar, W. Handayani, and A. H. Saputro, “Bananas moisture content prediction system using visual-nir imaging,” in 2017 5th International Conference on Instrumentation, Control, and Automation (ICA), 2017, pp. 89–92. [Online]. Available: https://doi.org/10.1109/ICA.2017.8068419