Numerical simulation of the under-expanded flow in the experimental conical nozzle helios-x
Main Article Content
Abstract
Article Details
The Universidad Politécnica Salesiana of Ecuador preserves the copyrights of the published works and will favor the reuse of the works. The works are published in the electronic edition of the journal under a Creative Commons Attribution/Noncommercial-No Derivative Works 4.0 Ecuador license: they can be copied, used, disseminated, transmitted and publicly displayed.
The undersigned author partially transfers the copyrights of this work to the Universidad Politécnica Salesiana of Ecuador for printed editions.
It is also stated that they have respected the ethical principles of research and are free from any conflict of interest. The author(s) certify that this work has not been published, nor is it under consideration for publication in any other journal or editorial work.
The author (s) are responsible for their content and have contributed to the conception, design and completion of the work, analysis and interpretation of data, and to have participated in the writing of the text and its revisions, as well as in the approval of the version which is finally referred to as an attachment.
References
[2] J. Blazek, Computational fluid dynamics: principles and applications. Butterworth-Heinemann, 2015. [Online]. Available: https://bit.ly/3pnxjhx
[3] B. Andersson, R. Andersson, L. Hakansson, M. Mortensen, R. Sudiyo, and B. van Wachem, Computational Fluid Dynamics Engineers. Cambridge University Press, 2011. [Online]. Available: https://bit.ly/32BPCWo
[4] J. D. Anderson, Fundamentals of aerodynamics. McGraw-Hill international editions. Mechanical engineering series, 1984. [Online]. Available: https://bit.ly/3eQR5ge
[5] F. M. White, Fluid Mechanics. McGraw-Hill series in mechanical engineering, 2011. [Online]. Available: https://bit.ly/35opmAy
[6] P. Krehl and S. Engemann, “August toepler – the first who visualized shock waves,” Shock Waves, vol. 5, no. 1, pp. 1–18, Jun. 1995. [Online]. Available: https://doi.org/10.1007/BF02425031
[7] V. Karman, “The fundamentals of the statistical theory of turbulence,” Journal of the Aeronautical Sciences, vol. 4, no. 4, pp. 131–138, 1937. [Online]. Available: https://doi.org/10.2514/8.350
[8] F. White, Viscous fluid flow. McGraw-Hill series in Aeronautical and Aerospace Engineering, 1974. [Online]. Available: https://bit.ly/3eRRCyP
[9] H. Schlichting and K. Gersten, Boundary-Layer Theory. Springer, 2016. [Online]. Available: https://bit.ly/36yZGAx
[10] D. C. Wilcox, Turbulence Modeling for CFD. DCW Industries, Incorporated, 1994. [Online]. Available: https://bit.ly/32HZnCm
[11] A. L. Tolentino, J. Ferreira, M. Parco, L. Lacruz, and V. Marcano, “Simulación numérica del flujo sobre-expandido en la tobera cónica experimental ULA-1A XP,” Unviversidad, Ciencia y Tecnología, vol. 21, no. 84, pp. 126–133, 2017. [Online]. Available: https://bit.ly/2H4yX6k
[12] V. Marcano, P. Benitez, C. La Rosa, L. La Cruz, M. A. Parco, J. Ferreira, R. Andrenssen, A. Serra Valls, M. Peñaloza, L. Rodríguez, J. E. Cárdenas, V. Minitti, and J. J. Rojas, “Progresos alcanzados en el proyecto universitario cohete sonda ULA,” Universidad, Ciencia y Tecnología, vol. 13, no. 53, pp. 305–316, 2009. [Online]. Available: https://bit.ly/3f73vB2
[13] L. Lacruz-Rincón, M. A. Parco-Brizuela, R. Santos-Luque, C. Torres-Monzón, J. Ferreira- Rodríguez, and P. Benítez-Díaz, “Análisis experimental de las oscilaciones de presión interna en un motor de combustible solido para cohete sonda,” Ciencia e Ingeniería, vol. 13, no. 53, 2016. [Online]. Available: https://bit.ly/3noQfdL
[14] Universidad de los Andes. Programa espacial ULA. [Online]. Available: https://bit.ly/35tiodw
[15] S. L. Tolentino Masgo and R. Nakka, “Simulación del flujo supersónico en la tobera del motor cohete Helios-X de categoría amateur,” in Jornadas de Investigación, 2019. [Online]. Available: https://bit.ly/3pwDY8U
[16] R. Nakka. Richard Nakka’s experimental rocketry web site. [Online]. Available: https://bit.ly/2IrDZKX
[17] F. R. Menter, “Two equation eddy-viscosity turbulence models for engineering applications,” Aerospace Research Central, vol. 32, no. 8, pp. 1598–1605, 2012. [Online]. Available: https://doi.org/10.2514/3.12149
[18] A. Balabel, A. M. Hegab, M. Nasr, and S. M. El-Behery, “Assessment of turbulence modeling for gas flow in two-dimensional convergent–divergent rocket nozzle,” Applied Mathematical Modelling, vol. 35, no. 7, pp. 3408–3422, 2011. [Online]. Available: https://doi.org/10.1016/j.apm.2011.01.013
[19] S. L. Tolentino Masgo, “Evaluación de modelos de turbulencia para el flujo de aire en una tobera plana,” INGENIUS, no. 22, pp. 25–37, 2019. [Online]. Available: https://doi.org/10.17163/ings.n22.2019.03
[20] Y. Liu, J. Wu, and L. Lu, “Performance of turbulence models for transonic flows in a diffuser,” Modern Physics Letters B, vol. 30, no. 25, p. 1650326, 2016. [Online]. Available: https://doi.org/10.1142/S0217984916503267
[21] S. L. B. Tolentino Masgo, “Evaluación de modelos de turbulencia para el flujo de aire en un difusor transónico,” Revista Politécnica, vol. 45, no. 1, pp. 25–38, abr. 2020. [Online]. Available: https://doi.org/10.33333/rp.vol45n1.03
[22] Y. Zhang, H. Chen, M. Zhang, M. Zhang, Z. Li, and S. Fu, “Performance prediction of conical nozzle using navier–stokes computation,” Journal of Propulsion and Power, vol. 31, no. 1, pp. 192–203, 2015. [Online]. Available: https://doi.org/10.2514/1.B35164
[23] R. Jia, Z. Jiang, and W. Zhang, “Numerical analysis of flow separation and side loads of a conical nozzle during staging,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 230, no. 5, pp. 845–855, 2016. [Online]. Available: https://doi.org/10.1177/0954410015599798
[24] H. Ding, C. Wang, and G. Wang, “Transient conjugate heat transfer in critical flow nozzles,” International Journal of Heat and Mass Transfer, vol. 104, pp. 930–942, 2017. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.021
[25] A. K. Mubarak and P. S. Tide, “Design of a double parabolic supersonic nozzle and performance evaluation by experimental and numerical methods,” Aircraft Engineering and Aerospace Technology, vol. 91, no. 1, pp. 145–156, Dec. 2020. [Online]. Available: https://doi.org/10.1108/AEAT-12-2017-0275
[26] R. H. Pletcher, J. C. Tannehill, and D. Anderson, Computational Fluid Mechanics and Heat Transfer. CRC Press, 2012. [Online]. Available: https://bit.ly/3psYKX9
[27] D. Munday, E. Gutmark, J. Liu, and K. Kailasanath, Flow Structure of Supersonic Jets from Conical C-D Nozzles. [Online]. Available: https://doi.org/10.2514/6.2009-4005
[28] J. Östlund and B. Muhammad-Klingmann, “Supersonic Flow Separation with Application to Rocket Engine Nozzles ,” Applied Mechanics Reviews, vol. 58, no. 3, pp. 143–177, 05 2005. [Online]. Available: https://doi.org/10.1115/1.1894402