Mathematical model of a resistive oven for thermoforming polypropylene sheets

Main Article Content

Abstract

A mathematical model of a resistive oven for the production of thermoformed sheets is developed in this paper; such oven is located in a production plant in the city of Riobamba. The objective of the research is to achieve temperature stability and that the plates have a homogeneous dimension when going through the thermoforming process, to guarantee customer satisfaction. For this purpose, the physical variables that govern the heat transfer phenomena, namely radiation, convection and conduction, are analyzed, to obtain a mathematical model that predicts the temperature profile of the oven in the thermoforming process, from which a controller is designed using various control techniques that are efficiently coupled to the system. A theoretical study of the physical phenomena and of the mathematical equations that represent them is proposed in the first stage of the research. Then, they are solved through computational techniques using Simulink to obtain the temperature profile. Finally, this model is validated by comparing it with those obtained in previous works through statistical techniques, and a new controller that guarantees minimum temperature variability is proposed. As a result of the simulation, a variation of ±1 mm in the width of the plate is achieved.

Article Details

Section
Industrial Control

References

European Parliament. (2014) Plastic garbage: from waste to resource. [Online]. Available: https://bit.ly/3xwkPJ6

A. Méndez Prieto, “Reciclado de plásticos de uso agrícola,” Integra. Revista de la Asociación Ecuatoriana de Plásticos, no. 58, pp. 24–26, 2019. [Online]. Available: https://bit.ly/3aVgjMF

M. E. Olivo Silva and J. L. Cortés LLanganate, “Diseño e implementación de un sistema SCADA para el monitoreo de máquinas del proceso de producción de traslúcido para Techoluz de Tubasec CA,” Escuela Superior Politécnica del Chimborazo, Ecuador. 2013. [Online]. Available: https://bit.ly/3zzQgVx

J. L. Cortés-Llanganate, “Diseño de un sistema de control de temperatura para los hornos de termoformado de la máquina de láminas P7 de Techoluz en Tubasec CA,” Escuela Superior Politécnica del Chimborazo, Ecuador. 2017. [Online]. Available: https://bit.ly/3Qq8iQ3

M. I. Neaca and A. M. Neaca, “Modeling and simulation of the transient heating regime in an electrical oven,” in 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), vol. 3, 2010, pp. 1–6. [Online]. Available: https://doi.org/10.1109/AQTR.2010.5520672

——, “Mathematical model for resistive tubular heater,” in 2016 International Conference on Applied and Theoretical Electricity (ICATE), 2016, pp. 1–6. [Online]. Available: https://doi.org/10.1109/ICATE.2016.7754676

M. I. Neaca, “Simulink model for resistive tubular heater,” in 2018 International Conference on Applied and Theoretical Electricity (ICATE), 2018, pp. 1–6. [Online]. Available: https://doi.org/10.1109/ICATE.2018.8551453

——, “Comparative simulation of the dynamic regimes of resistive heating elements,” in 2019 International Conference on Electromechanical and Energy Systems (SIELMEN), 2019, pp. 1–6. [Online]. Available: https://doi.org/10.1109/SIELMEN.2019.8905842

J. L. Throne, “Heating semitransparent polymers in thermoforming,” Thermoforming Quarterly, vol. 8, 1999.

J. L. Throne and P. J. Mooney, “Thermoforming: Growth and evolution,” Thermoforming Quarterly, vol. 50, no. 11, p. 113, 2005.

S. A. Khan, P. Girard, N. Bhuiyan, and V. Thomson, “Improved mathematical modeling for the sheet reheat phase during thermoforming,” Polymer Engineering & Science, vol. 52, no. 3, pp. 625–636, 2012. [Online]. Available: https://doi.org/10.1002/pen.22125

E. S. Erdogan and O. Eksi, “Prediction of wall thickness distribution in simple thermoforming moulds,” Strojniski vestnik - Journal of Mechanical Engineering, vol. 60, no. 3, pp. 195–202, 2014. [Online]. Available: https://doi.org/10.5545/sv-jme.2013.1486

M. Chy, “Estimation and control of plastic temperature in heating phase of thermoforming process,” Ph.D. dissertation, McGill University. 2014. [Online]. Available: https://bit.ly/39s46Pe

F. M. Schmidt, Y. Le Maoult, and S. Monteix, “Modelling of infrared heating of thermoplastic sheet used in thermoforming process,” Journal of Materials Processing Technology, vol. 143-144, pp. 225–231, 2003, proceedings of the International Conference on the Advanced Materials Processing Technology, 2001. [Online]. Available: https://doi.org/10.1016/S0924-0136(03)00291-7

M. Ajersch, “Modeling and real-time control of sheet reheat phase in thermoforming,” mathesis, McGill University. 2004. [Online]. Available: https://bit.ly/3zEJWMK

M. I. Chy and B. Boulet, “Development of an improved mathematical model of the heating phase of thermoforming process,” in 2011 IEEE Industry Applications Society Annual Meeting, 2011, pp. 1–8. [Online]. Available: https://doi.org/10.1109/IAS.2011.6074343

KANTHAL. Podemos electrificar cualquier proceso de calentamiento. Sandvik AB. [Online]. Available: https://bit.ly/3MKUKfb

D. S. Mendoza, J. Solano, and R. Correa, “Modelo de operador fraccional para describir la dinámica de los supercondensadores,”

Revista UIS Ingenierías, vol. 19, no. 3, pp. 79–86, 2020. [Online]. Available: https://doi.org/10.18273/revuin.v19n3-2020008

M. A. Moreno, Apuntes de control PID. Unviersidad Mayor de San Andres, La Paz - Bolivia, 2001, vol. 8.

V. V. Patel, “Ziegler-nichols tuning method,” Resonance, vol. 25, no. 10, pp. 1385– 1397, Oct 2020. [Online]. Available: https://doi.org/10.1007/s12045-020-1058-z

M. D. I. Putri, A. Ma’arif, and R. D. Puriyanto, “Pengendali Kecepatan Sudut Motor DC Menggunakan Kontrol PID dan Tuning Ziegler Nichols,” Techno (Jurnal Fakultas Teknik, Universitas Muhammadiyah Purwokerto), vol. 23, no. 1, 2022. [Online]. Available: http://dx.doi.org/10.30595/techno.v23i1.10773